Built with Alectryon, running Lean4 v4.13.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use ⌘ instead of Ctrl.
import Mathlib.Data.Real.StarOrdered
import Mathlib.Order.CompletePartialOrder
import Mathlib.Probability.ConditionalExpectation
import Mathlib.Probability.Kernel.Disintegration.StandardBorel
open MeasureTheory Set ProbabilityTheory
/-- If two constant functions are equal a.e w.r.t. a measure that is positive when applied to univ, then the two constants are equal.-/lemma constant_ae_eq_imp_eq {α β : Type*} [MeasurableSpace α] {μ : Measure α}
(hμ : μ univ ≠0) (c d : β) (h_ae : (fun (_: α) ↦ c) =ᵐ[μ] (fun (_: α) ↦ d)) :
c = d :=
Goals accomplished!🐙
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d
c = d
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: ¬c = d
False
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d
c = d
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: c ≠ d
False
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d
c = d
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: c ≠ d
False
Goals accomplished!🐙
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: c ≠ d
False
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: c ≠ d
μ ({x | c = d} ∪ {x | c = d}ᶜ) =0
Goals accomplished!🐙
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: c ≠ d
μ ({x | c = d} ∪ {x | c = d}ᶜ) =0
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: c ≠ d this: {x | c = d} =∅
μ {x | c = d} =0
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: c ≠ d
μ ({x | c = d} ∪ {x | c = d}ᶜ) =0
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: c ≠ d this: {x | c = d} =∅
μ {x | c = d} =0
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: c ≠ d this: {x | c = d} =∅
μ ∅=0
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: c ≠ d this: {x | c = d} =∅
μ ∅=0
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: c ≠ d
μ ({x | c = d} ∪ {x | c = d}ᶜ) =0
Goals accomplished!🐙
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: c ≠ d
False
Goals accomplished!🐙
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d
c = d
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: c ≠ d this: μ ({x | c = d} ∪ {x | c = d}ᶜ) =0
False
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α c, d: β hμ: μ ({x | c = d} ∪ {x | c = d}ᶜ) ≠0 h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: c ≠ d this: μ ({x | c = d} ∪ {x | c = d}ᶜ) =0
False
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α c, d: β hμ: μ ({x | c = d} ∪ {x | c = d}ᶜ) ≠0 h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: c ≠ d this: μ ({x | c = d} ∪ {x | c = d}ᶜ) =0
False
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α c, d: β hμ: μ ({x | c = d} ∪ {x | c = d}ᶜ) ≠0 h_ae: (fun x => c) =ᶠ[ae μ] fun x => d h: c ≠ d this: μ ({x | c = d} ∪ {x | c = d}ᶜ) =0
False
α: Type u_1 β: Type u_2 inst✝: MeasurableSpace α μ: Measure α hμ: μ univ ≠0 c, d: β h_ae: (fun x => c) =ᶠ[ae μ] fun x => d
c = d
Goals accomplished!🐙
/- Law of total probability using `condKernel`.-/namespace ProbTotalLaw
variable {Ω α: Type} [Nonempty Ω] [MeasurableSpace Ω] [MeasurableSpace α] [StandardBorelSpace Ω]
/- instance {μ : Measure α} {ν : Measure Ω} [IsFiniteMeasure μ] [IsFiniteMeasure ν] : IsFiniteMeasure (μ.prod ν) where measure_univ_lt_top := by rw [μ.prod_apply MeasurableSet.univ] simp_rw [preimage_univ, lintegral_const] suffices ν univ * μ univ < ⊤ * ⊤ by exact this exact ENNReal.mul_lt_mul (IsFiniteMeasure.measure_univ_lt_top) (IsFiniteMeasure.measure_univ_lt_top) -/variable (μ : Measure α) (ν : Measure Ω) [IsFiniteMeasure μ] [IsFiniteMeasure ν]
theorem probability_total_law :
∀ s, μ s =∫⁻ x in s, ∫⁻ _, 1∂(μ.prod ν).condKernel x ∂μ :=
end ProbTotalLaw
/- Tower property of conditional expectation using `condexp`.-/namespace ExpCond
variable {Ω F : Type*}
[NormedAddCommGroup F] [NormedSpace ℝ F] [CompleteSpace F]
{m2 m₁ mΩ : MeasurableSpace Ω} {μ : Measure Ω} {X : Ω→ F}
/- example (hm₁ : m₁ ≤ mΩ) (m₂ : m2 ≤ m₁) [SigmaFinite (μ.trim hm₁)] : ∀ (s : Set Ω), MeasurableSet[m2] s → ∫ x in s, condexp m2 μ X x ∂μ = ∫ x in s, condexp m₁ μ (condexp m2 μ X) x ∂μ := by intro s hs exact (setIntegral_condexp hm₁ (integrable_condexp) (m₂ s hs)).symm -/theorem tower_property {X : Ω→ F} (hX : Integrable X μ) (hm₁ : m₁ ≤ mΩ) (m₂ : m2 ≤ m₁) [SigmaFinite (μ.trim (m₂.trans hm₁))] :
μ[X | m2] =ᵐ[μ] μ[μ[X | m₁] | m2] :=
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯)
μ[X|m2] =ᶠ[ae μ] μ[μ[X|m₁]|m2]
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
μ[X|m2] =ᶠ[ae μ] μ[μ[X|m₁]|m2]
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯)
μ[X|m2] =ᶠ[ae μ] μ[μ[X|m₁]|m2]
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
hf
Integrable (μ[X|m₁]) μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
∀ (s : Set Ω), MeasurableSet s → μ s <⊤→ IntegrableOn (μ[X|m2]) s μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
∀ (s : Set Ω), MeasurableSet s → μ s <⊤→∫ (x : Ω) in s, (μ[X|m2]) x ∂μ =∫ (x : Ω) in s, (μ[X|m₁]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
AEStronglyMeasurable' m2 (μ[X|m2]) μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯)
μ[X|m2] =ᶠ[ae μ] μ[μ[X|m₁]|m2]
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
hf
Integrable (μ[X|m₁]) μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
hf
Integrable (μ[X|m₁]) μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
∀ (s : Set Ω), MeasurableSet s → μ s <⊤→ IntegrableOn (μ[X|m2]) s μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
∀ (s : Set Ω), MeasurableSet s → μ s <⊤→∫ (x : Ω) in s, (μ[X|m2]) x ∂μ =∫ (x : Ω) in s, (μ[X|m₁]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
AEStronglyMeasurable' m2 (μ[X|m2]) μ
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯)
μ[X|m2] =ᶠ[ae μ] μ[μ[X|m₁]|m2]
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
hg_int_finite
∀ (s : Set Ω), MeasurableSet s → μ s <⊤→ IntegrableOn (μ[X|m2]) s μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
hg_int_finite
∀ (s : Set Ω), MeasurableSet s → μ s <⊤→ IntegrableOn (μ[X|m2]) s μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
∀ (s : Set Ω), MeasurableSet s → μ s <⊤→∫ (x : Ω) in s, (μ[X|m2]) x ∂μ =∫ (x : Ω) in s, (μ[X|m₁]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
AEStronglyMeasurable' m2 (μ[X|m2]) μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁) s: Set Ω a✝¹: MeasurableSet s a✝: μ s <⊤
hg_int_finite
IntegrableOn (μ[X|m2]) s μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
hg_int_finite
∀ (s : Set Ω), MeasurableSet s → μ s <⊤→ IntegrableOn (μ[X|m2]) s μ
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯)
μ[X|m2] =ᶠ[ae μ] μ[μ[X|m₁]|m2]
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
hg_eq
∀ (s : Set Ω), MeasurableSet s → μ s <⊤→∫ (x : Ω) in s, (μ[X|m2]) x ∂μ =∫ (x : Ω) in s, (μ[X|m₁]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
hg_eq
∀ (s : Set Ω), MeasurableSet s → μ s <⊤→∫ (x : Ω) in s, (μ[X|m2]) x ∂μ =∫ (x : Ω) in s, (μ[X|m₁]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
AEStronglyMeasurable' m2 (μ[X|m2]) μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁) s: Set Ω hs: MeasurableSet s a✝: μ s <⊤
hg_eq
∫ (x : Ω) in s, (μ[X|m2]) x ∂μ =∫ (x : Ω) in s, (μ[X|m₁]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
hg_eq
∀ (s : Set Ω), MeasurableSet s → μ s <⊤→∫ (x : Ω) in s, (μ[X|m2]) x ∂μ =∫ (x : Ω) in s, (μ[X|m₁]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁) s: Set Ω hs: MeasurableSet s a✝: μ s <⊤
hg_eq
∫ (x : Ω) in s, (μ[X|m2]) x ∂μ =∫ (x : Ω) in s, (μ[X|m₁]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁) s: Set Ω hs: MeasurableSet s a✝: μ s <⊤
hg_eq
∫ (x : Ω) in s, X x ∂μ =∫ (x : Ω) in s, (μ[X|m₁]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁) s: Set Ω hs: MeasurableSet s a✝: μ s <⊤
hg_eq
∫ (x : Ω) in s, X x ∂μ =∫ (x : Ω) in s, (μ[X|m₁]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
hg_eq
∀ (s : Set Ω), MeasurableSet s → μ s <⊤→∫ (x : Ω) in s, (μ[X|m2]) x ∂μ =∫ (x : Ω) in s, (μ[X|m₁]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁) s: Set Ω hs: MeasurableSet s a✝: μ s <⊤ hs2: MeasurableSet s
hg_eq
∫ (x : Ω) in s, X x ∂μ =∫ (x : Ω) in s, (μ[X|m₁]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁)
hg_eq
∀ (s : Set Ω), MeasurableSet s → μ s <⊤→∫ (x : Ω) in s, (μ[X|m2]) x ∂μ =∫ (x : Ω) in s, (μ[X|m₁]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁) s: Set Ω hs: MeasurableSet s a✝: μ s <⊤ hs2: MeasurableSet s
hg_eq
∫ (x : Ω) in s, X x ∂μ =∫ (x : Ω) in s, (μ[X|m₁]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯) this: SigmaFinite (μ.trim hm₁) s: Set Ω hs: MeasurableSet s a✝: μ s <⊤ hs2: MeasurableSet s
hg_eq
∫ (x : Ω) in s, X x ∂μ =∫ (x : Ω) in s, X x ∂μ
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝³: NormedAddCommGroup F inst✝²: NormedSpace ℝ F inst✝¹: CompleteSpace F m2, m₁, mΩ: MeasurableSpace Ω μ: Measure Ω X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ m₂: m2 ≤ m₁ inst✝: SigmaFinite (μ.trim ⋯)
μ[X|m2] =ᶠ[ae μ] μ[μ[X|m₁]|m2]
Goals accomplished!🐙
end ExpCond
/- Law of total expectation using `condExp`.-/namespace ExpTotal
variable {Ω F : Type*}
[NormedAddCommGroup F] [NormedSpace ℝ F] [CompleteSpace F]
{m2 m₁ mΩ : MeasurableSpace Ω} {μ : Measure Ω} {X : Ω→ F}
open ExpCond
def S : Set (Set Ω) := {∅, univ}
lemma destruct_S : ∀ ⦃t : Set Ω⦄, t ∈ S → t =∅∨ t = univ := fun _ ht ↦ ht
lemma S_apply : (∅ : Set Ω) ∈ S ∧ (univ : Set Ω) ∈ S :=
⟨mem_insert ∅ {univ}, mem_insert_of_mem ∅ rfl⟩
/-- The trivial σ-algebra : {∅, univ}.-/def m_trivial : MeasurableSpace Ω := MeasurableSpace.generateFrom S
/-- The trivial σ-algebra is less or equal then any σ-algebra.-/lemma m_trivial_le : ∀ (m : MeasurableSpace Ω), m_trivial ≤ m :=
Goals accomplished!🐙
Ω: Type u_1
∀ (m : MeasurableSpace Ω), m_trivial ≤ m
Ω: Type u_1 m✝: MeasurableSpace Ω
m_trivial ≤ m✝
Ω: Type u_1
∀ (m : MeasurableSpace Ω), m_trivial ≤ m
Ω: Type u_1 m✝: MeasurableSpace Ω
h
∀ t ∈ S, MeasurableSet t
Ω: Type u_1
∀ (m : MeasurableSpace Ω), m_trivial ≤ m
Ω: Type u_1 m✝: MeasurableSpace Ω t✝: Set Ω ht: t✝∈ S
h
MeasurableSet t✝
Ω: Type u_1
∀ (m : MeasurableSpace Ω), m_trivial ≤ m
Ω: Type u_1 m✝: MeasurableSpace Ω t✝: Set Ω ht: t✝∈ S x✝: t✝=∅∨ t✝= univ
h
MeasurableSet t✝
Ω: Type u_1 m✝: MeasurableSpace Ω t✝: Set Ω ht: t✝∈ S h: t✝=∅
h.inl
MeasurableSet t✝
Ω: Type u_1 m✝: MeasurableSpace Ω t✝: Set Ω ht: t✝∈ S h: t✝=∅
h.inl
MeasurableSet t✝
Ω: Type u_1 m✝: MeasurableSpace Ω t✝: Set Ω ht: t✝∈ S h: t✝=∅
h.inl
MeasurableSet ∅
Ω: Type u_1 m✝: MeasurableSpace Ω t✝: Set Ω ht: t✝∈ S h: t✝=∅
h.inl
MeasurableSet ∅
Ω: Type u_1 m✝: MeasurableSpace Ω t✝: Set Ω ht: t✝∈ S h: t✝=∅
h.inl
MeasurableSet t✝
Goals accomplished!🐙
Ω: Type u_1 m✝: MeasurableSpace Ω t✝: Set Ω ht: t✝∈ S x✝: t✝=∅∨ t✝= univ
h
MeasurableSet t✝
Ω: Type u_1 m✝: MeasurableSpace Ω t✝: Set Ω ht: t✝∈ S h: t✝= univ
h.inr
MeasurableSet t✝
Ω: Type u_1 m✝: MeasurableSpace Ω t✝: Set Ω ht: t✝∈ S h: t✝= univ
h.inr
MeasurableSet t✝
Ω: Type u_1 m✝: MeasurableSpace Ω t✝: Set Ω ht: t✝∈ S h: t✝= univ
h.inr
MeasurableSet univ
Ω: Type u_1 m✝: MeasurableSpace Ω t✝: Set Ω ht: t✝∈ S h: t✝= univ
h.inr
MeasurableSet univ
Ω: Type u_1 m✝: MeasurableSpace Ω t✝: Set Ω ht: t✝∈ S h: t✝= univ
h.inr
MeasurableSet t✝
Goals accomplished!🐙
/-- The trivial σ-algebra is only composed of ∅ and univ.-/lemma measurableSet_S {s : Set Ω} : MeasurableSet[m_trivial] s → s ∈ S :=
Goals accomplished!🐙
Ω: Type u_1 s: Set Ω
MeasurableSet s → s ∈ S
Ω: Type u_1 s: Set Ω
hC
∀ t ∈ S, t ∈ S
Ω: Type u_1 s: Set Ω
∅∈ S
Ω: Type u_1 s: Set Ω
∀ t ∈ S, tᶜ∈ S
Ω: Type u_1 s: Set Ω
∀ (f : ℕ → Set Ω), (∀ (n : ℕ), f n ∈ S) →⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω
MeasurableSet s → s ∈ S
Ω: Type u_1 s: Set Ω
hC
∀ t ∈ S, t ∈ S
Ω: Type u_1 s: Set Ω
hC
∀ t ∈ S, t ∈ S
Ω: Type u_1 s: Set Ω
∅∈ S
Ω: Type u_1 s: Set Ω
∀ t ∈ S, tᶜ∈ S
Ω: Type u_1 s: Set Ω
∀ (f : ℕ → Set Ω), (∀ (n : ℕ), f n ∈ S) →⋃ i, f i ∈ S
Goals accomplished!🐙
Ω: Type u_1 s: Set Ω
MeasurableSet s → s ∈ S
Ω: Type u_1 s: Set Ω
h_empty
∅∈ S
Ω: Type u_1 s: Set Ω
h_empty
∅∈ S
Ω: Type u_1 s: Set Ω
∀ t ∈ S, tᶜ∈ S
Ω: Type u_1 s: Set Ω
∀ (f : ℕ → Set Ω), (∀ (n : ℕ), f n ∈ S) →⋃ i, f i ∈ S
Goals accomplished!🐙
Ω: Type u_1 s: Set Ω
MeasurableSet s → s ∈ S
Ω: Type u_1 s, t: Set Ω ht: t ∈ S
h_compl
tᶜ∈ S
Ω: Type u_1 s: Set Ω
∀ (f : ℕ → Set Ω), (∀ (n : ℕ), f n ∈ S) →⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω
MeasurableSet s → s ∈ S
Ω: Type u_1 s, t: Set Ω ht: t ∈ S x✝: t =∅∨ t = univ
h_compl
tᶜ∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t =∅
h_compl.inl
tᶜ∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t =∅
h_compl.inl
tᶜ∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t =∅
h_compl.inl
∅ᶜ∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t =∅
h_compl.inl
∅ᶜ∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t =∅
h_compl.inl
tᶜ∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t =∅ this: ∅ᶜ= univ
h_compl.inl
∅ᶜ∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t =∅
h_compl.inl
tᶜ∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t =∅ this: ∅ᶜ= univ
h_compl.inl
∅ᶜ∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t =∅ this: ∅ᶜ= univ
h_compl.inl
univ ∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t =∅ this: ∅ᶜ= univ
h_compl.inl
univ ∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t =∅
h_compl.inl
tᶜ∈ S
Goals accomplished!🐙
Ω: Type u_1 s, t: Set Ω ht: t ∈ S x✝: t =∅∨ t = univ
h_compl
tᶜ∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t = univ
h_compl.inr
tᶜ∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t = univ
h_compl.inr
tᶜ∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t = univ
h_compl.inr
univᶜ∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t = univ
h_compl.inr
tᶜ∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t = univ
h_compl.inr
∅∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t = univ
h_compl.inr
∅∈ S
Ω: Type u_1 s, t: Set Ω ht✝: t ∈ S ht: t = univ
h_compl.inr
tᶜ∈ S
Goals accomplished!🐙
Ω: Type u_1 s: Set Ω
MeasurableSet s → s ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S
h_Union
⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω
MeasurableSet s → s ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ
pos
⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ¬∃ n, f n = univ
⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω
MeasurableSet s → s ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ
pos
⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ
pos
⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ¬∃ n, f n = univ
⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ
pos
⋃ i, f i ∈ S
Goals accomplished!🐙
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ
pos
⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ
∀ (x : Ω), ∃ i, x ∈ f i
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ
pos
⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ x: Ω
∃ i, x ∈ f i
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ
pos
⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S x: Ω n: ℕ h: f n = univ
intro
∃ i, x ∈ f i
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ
pos
⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S x: Ω n: ℕ h: f n = univ
h
x ∈ f n
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ
pos
⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S x: Ω n: ℕ h: f n = univ
h
x ∈ f n
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S x: Ω n: ℕ h: f n = univ
h
x ∈ univ
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S x: Ω n: ℕ h: f n = univ
h
x ∈ univ
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ
pos
⋃ i, f i ∈ S
Goals accomplished!🐙
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ
pos
⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ this: ⋃ i, f i = univ
pos
⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ this: ⋃ i, f i = univ
pos
univ ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ this: ⋃ i, f i = univ
pos
univ ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∃ n, f n = univ
pos
⋃ i, f i ∈ S
Goals accomplished!🐙
Ω: Type u_1 s: Set Ω
MeasurableSet s → s ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∀ (n : ℕ), f n ≠ univ
neg
⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω
MeasurableSet s → s ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∀ (n : ℕ), f n ≠ univ
neg
⋃ i, f i ∈ S
Goals accomplished!🐙
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∀ (n : ℕ), f n ≠ univ
neg
⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∀ (n : ℕ), f n ≠ univ
⋃ i, f i =∅
Goals accomplished!🐙
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∀ (n : ℕ), f n ≠ univ
⋃ i, f i =∅
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∀ (n : ℕ), f n ≠ univ n: ℕ
f n =∅
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∀ (n : ℕ), f n ≠ univ
⋃ i, f i =∅
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S n: ℕ h: f n ≠ univ
f n =∅
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∀ (n : ℕ), f n ≠ univ
⋃ i, f i =∅
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S n: ℕ h: f n ≠ univ x✝: f n =∅∨ f n = univ
f n =∅
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S n: ℕ h: f n ≠ univ h✝: f n = univ
inr
f n =∅
Goals accomplished!🐙
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S n: ℕ h: f n ≠ univ x✝: f n =∅∨ f n = univ
f n =∅
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S n: ℕ h: f n ≠ univ h✝: f n =∅
inl
f n =∅
Goals accomplished!🐙
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∀ (n : ℕ), f n ≠ univ
neg
⋃ i, f i ∈ S
Goals accomplished!🐙
Ω: Type u_1 s: Set Ω
MeasurableSet s → s ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∀ (n : ℕ), f n ≠ univ this: ⋃ i, f i =∅
neg
⋃ i, f i ∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∀ (n : ℕ), f n ≠ univ this: ⋃ i, f i =∅
neg
∅∈ S
Ω: Type u_1 s: Set Ω f: ℕ → Set Ω hf: ∀ (n : ℕ), f n ∈ S h: ∀ (n : ℕ), f n ≠ univ this: ⋃ i, f i =∅
neg
∅∈ S
Ω: Type u_1 s: Set Ω
MeasurableSet s → s ∈ S
Goals accomplished!🐙
variable [IsProbabilityMeasure μ]
/-- The trivial σ-algebra and any other σ-algebra are independent.-/lemma m_trivial_indep (m₁ : MeasurableSpace Ω) : Indep m₁ m_trivial μ :=
/-- The expectation conditioned to the trivial σ-algebra is equal a.e. to the expectation.-/lemma condition_m_trivial {X : Ω→ F} (hm₁ : m₁ ≤ mΩ)
(hf : StronglyMeasurable[m₁] X) [SigmaFinite (μ.trim (m_trivial_le mΩ))] :
μ [X | m_trivial] =ᵐ[μ] (fun _ ↦ μ[X]) :=
condexp_indep_eq hm₁ (m_trivial_le mΩ) hf (m_trivial_indep m₁)
/-- The law of total expectation.-/theorem total_expectation_law {X : Ω→ F} (hX : Integrable X μ)
(hm₁ : m₁ ≤ mΩ) [SigmaFinite (μ.trim hm₁)] (hm : StronglyMeasurable[m₁] X) :
μ[μ[X | m₁]] = μ[X] :=
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X
∫ (x : Ω), (μ[X|m₁]) x ∂μ =∫ (x : Ω), X x ∂μ
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X μ_univ_neq_0: μ univ ≠0
∫ (x : Ω), (μ[X|m₁]) x ∂μ =∫ (x : Ω), X x ∂μ
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X
∫ (x : Ω), (μ[X|m₁]) x ∂μ =∫ (x : Ω), X x ∂μ
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X μ_univ_neq_0: μ univ ≠0
h_ae
(fun x =>∫ (x : Ω), (μ[X|m₁]) x ∂μ) =ᶠ[ae μ] fun x =>∫ (x : Ω), X x ∂μ
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X
∫ (x : Ω), (μ[X|m₁]) x ∂μ =∫ (x : Ω), X x ∂μ
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X μ_univ_neq_0: μ univ ≠0 tower: μ[X|m_trivial] =ᶠ[ae μ] μ[μ[X|m₁]|m_trivial]
h_ae
(fun x =>∫ (x : Ω), (μ[X|m₁]) x ∂μ) =ᶠ[ae μ] fun x =>∫ (x : Ω), X x ∂μ
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X
∫ (x : Ω), (μ[X|m₁]) x ∂μ =∫ (x : Ω), X x ∂μ
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X μ_univ_neq_0: μ univ ≠0 tower: μ[X|m_trivial] =ᶠ[ae μ] μ[μ[X|m₁]|m_trivial] sMeasurable: StronglyMeasurable (μ[X|m₁])
h_ae
(fun x =>∫ (x : Ω), (μ[X|m₁]) x ∂μ) =ᶠ[ae μ] fun x =>∫ (x : Ω), X x ∂μ
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X
∫ (x : Ω), (μ[X|m₁]) x ∂μ =∫ (x : Ω), X x ∂μ
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X μ_univ_neq_0: μ univ ≠0 tower: μ[X|m_trivial] =ᶠ[ae μ] μ[μ[X|m₁]|m_trivial] sMeasurable: StronglyMeasurable (μ[X|m₁]) a: Ω ha1: (μ[μ[X|m₁]|m_trivial]) a =∫ (x : Ω), (μ[X|m₁]) x ∂μ ha2: (μ[X|m_trivial]) a =∫ (x : Ω), X x ∂μ ha3: (μ[X|m_trivial]) a = (μ[μ[X|m₁]|m_trivial]) a
h
∫ (x : Ω), (μ[X|m₁]) x ∂μ =∫ (x : Ω), X x ∂μ
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X
∫ (x : Ω), (μ[X|m₁]) x ∂μ =∫ (x : Ω), X x ∂μ
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X μ_univ_neq_0: μ univ ≠0 tower: μ[X|m_trivial] =ᶠ[ae μ] μ[μ[X|m₁]|m_trivial] sMeasurable: StronglyMeasurable (μ[X|m₁]) a: Ω ha1: (μ[μ[X|m₁]|m_trivial]) a =∫ (x : Ω), (μ[X|m₁]) x ∂μ ha2: (μ[X|m_trivial]) a =∫ (x : Ω), X x ∂μ ha3: (μ[X|m_trivial]) a = (μ[μ[X|m₁]|m_trivial]) a
h
∫ (x : Ω), (μ[X|m₁]) x ∂μ =∫ (x : Ω), X x ∂μ
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X μ_univ_neq_0: μ univ ≠0 tower: μ[X|m_trivial] =ᶠ[ae μ] μ[μ[X|m₁]|m_trivial] sMeasurable: StronglyMeasurable (μ[X|m₁]) a: Ω ha1: (μ[μ[X|m₁]|m_trivial]) a =∫ (x : Ω), (μ[X|m₁]) x ∂μ ha2: (μ[X|m_trivial]) a =∫ (x : Ω), X x ∂μ ha3: (μ[X|m_trivial]) a = (μ[μ[X|m₁]|m_trivial]) a
h
(μ[μ[X|m₁]|m_trivial]) a =∫ (x : Ω), X x ∂μ
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X μ_univ_neq_0: μ univ ≠0 tower: μ[X|m_trivial] =ᶠ[ae μ] μ[μ[X|m₁]|m_trivial] sMeasurable: StronglyMeasurable (μ[X|m₁]) a: Ω ha1: (μ[μ[X|m₁]|m_trivial]) a =∫ (x : Ω), (μ[X|m₁]) x ∂μ ha2: (μ[X|m_trivial]) a =∫ (x : Ω), X x ∂μ ha3: (μ[X|m_trivial]) a = (μ[μ[X|m₁]|m_trivial]) a
h
∫ (x : Ω), (μ[X|m₁]) x ∂μ =∫ (x : Ω), X x ∂μ
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X μ_univ_neq_0: μ univ ≠0 tower: μ[X|m_trivial] =ᶠ[ae μ] μ[μ[X|m₁]|m_trivial] sMeasurable: StronglyMeasurable (μ[X|m₁]) a: Ω ha1: (μ[μ[X|m₁]|m_trivial]) a =∫ (x : Ω), (μ[X|m₁]) x ∂μ ha2: (μ[X|m_trivial]) a =∫ (x : Ω), X x ∂μ ha3: (μ[X|m_trivial]) a = (μ[μ[X|m₁]|m_trivial]) a
h
(μ[X|m_trivial]) a =∫ (x : Ω), X x ∂μ
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X μ_univ_neq_0: μ univ ≠0 tower: μ[X|m_trivial] =ᶠ[ae μ] μ[μ[X|m₁]|m_trivial] sMeasurable: StronglyMeasurable (μ[X|m₁]) a: Ω ha1: (μ[μ[X|m₁]|m_trivial]) a =∫ (x : Ω), (μ[X|m₁]) x ∂μ ha2: (μ[X|m_trivial]) a =∫ (x : Ω), X x ∂μ ha3: (μ[X|m_trivial]) a = (μ[μ[X|m₁]|m_trivial]) a
h
∫ (x : Ω), (μ[X|m₁]) x ∂μ =∫ (x : Ω), X x ∂μ
Ω: Type u_1 F: Type u_2 inst✝⁴: NormedAddCommGroup F inst✝³: NormedSpace ℝ F inst✝²: CompleteSpace F m₁, mΩ: MeasurableSpace Ω μ: Measure Ω inst✝¹: IsProbabilityMeasure μ X: Ω→ F hX: Integrable X μ hm₁: m₁ ≤ mΩ inst✝: SigmaFinite (μ.trim hm₁) hm: StronglyMeasurable X μ_univ_neq_0: μ univ ≠0 tower: μ[X|m_trivial] =ᶠ[ae μ] μ[μ[X|m₁]|m_trivial] sMeasurable: StronglyMeasurable (μ[X|m₁]) a: Ω ha1: (μ[μ[X|m₁]|m_trivial]) a =∫ (x : Ω), (μ[X|m₁]) x ∂μ ha2: (μ[X|m_trivial]) a =∫ (x : Ω), X x ∂μ ha3: (μ[X|m_trivial]) a = (μ[μ[X|m₁]|m_trivial]) a
h
∫ (x : Ω), X x ∂μ =∫ (x : Ω), X x ∂μ
Goals accomplished!🐙
end ExpTotal
namespace MeasureTheory
variable {Ω F : Type*} [mΩ : MeasurableSpace Ω] [MeasurableSpace F]
/-- The σ-algebra generated by a r.v.-/def gen_sigma (Y : Ω→ F) := MeasurableSpace.generateFrom {S |∃ (A : Set F), MeasurableSet A ∧ Y⁻¹' A = S}
/-- The σ-algebra generated by a r.v is less or equal than the encompassing σ-algebra.-/lemma sigma_generated_le {Y : Ω→ F} (hY : Measurable Y) :
gen_sigma Y ≤ mΩ :=
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 mΩ: MeasurableSpace Ω inst✝: MeasurableSpace F Y: Ω→ F hY: Measurable Y
gen_sigma Y ≤ mΩ
Ω: Type u_1 F: Type u_2 mΩ: MeasurableSpace Ω inst✝: MeasurableSpace F Y: Ω→ F hY: Measurable Y
h
∀ t ∈ {S |∃ A, MeasurableSet A ∧ Y ⁻¹' A = S}, MeasurableSet t
Ω: Type u_1 F: Type u_2 mΩ: MeasurableSpace Ω inst✝: MeasurableSpace F Y: Ω→ F hY: Measurable Y
gen_sigma Y ≤ mΩ
Ω: Type u_1 F: Type u_2 mΩ: MeasurableSpace Ω inst✝: MeasurableSpace F Y: Ω→ F hY: Measurable Y t: Set Ω ht: t ∈ {S |∃ A, MeasurableSet A ∧ Y ⁻¹' A = S}
h
MeasurableSet t
Ω: Type u_1 F: Type u_2 mΩ: MeasurableSpace Ω inst✝: MeasurableSpace F Y: Ω→ F hY: Measurable Y
gen_sigma Y ≤ mΩ
Ω: Type u_1 F: Type u_2 mΩ: MeasurableSpace Ω inst✝: MeasurableSpace F Y: Ω→ F hY: Measurable Y t: Set Ω A: Set F hA: MeasurableSet A ht: Y ⁻¹' A = t
h.intro.intro
MeasurableSet t
Ω: Type u_1 F: Type u_2 mΩ: MeasurableSpace Ω inst✝: MeasurableSpace F Y: Ω→ F hY: Measurable Y
gen_sigma Y ≤ mΩ
Ω: Type u_1 F: Type u_2 mΩ: MeasurableSpace Ω inst✝: MeasurableSpace F Y: Ω→ F hY: Measurable Y t: Set Ω A: Set F hA: MeasurableSet A ht: Y ⁻¹' A = t
h.intro.intro
MeasurableSet t
Ω: Type u_1 F: Type u_2 mΩ: MeasurableSpace Ω inst✝: MeasurableSpace F Y: Ω→ F hY: Measurable Y t: Set Ω A: Set F hA: MeasurableSet A ht: Y ⁻¹' A = t
h.intro.intro
MeasurableSet (Y ⁻¹' A)
Ω: Type u_1 F: Type u_2 mΩ: MeasurableSpace Ω inst✝: MeasurableSpace F Y: Ω→ F hY: Measurable Y t: Set Ω A: Set F hA: MeasurableSet A ht: Y ⁻¹' A = t
h.intro.intro
MeasurableSet (Y ⁻¹' A)
Ω: Type u_1 F: Type u_2 mΩ: MeasurableSpace Ω inst✝: MeasurableSpace F Y: Ω→ F hY: Measurable Y
gen_sigma Y ≤ mΩ
Goals accomplished!🐙
/-- The condition probability.-/noncomputabledef Measure.condProb (μ : Measure Ω) (A : Set Ω) (Y : Ω→ F) :=
μ[A.indicator (fun (_ : Ω) ↦ (1 : ℝ)) | gen_sigma Y]
end MeasureTheory
namespace TotalProba
open ENNReal
variable {Ω F : Type*} [MeasurableSpace F]
{m2 m₁ mΩ : MeasurableSpace Ω} {μ : Measure Ω} {X Y : Ω→ F} (hY : Measurable Y)
/-- The law of total probability using the law of total expectation.-/theorem total_probability_law
[IsProbabilityMeasure μ] {A : Set Ω} (hA : MeasurableSet[gen_sigma Y] A)
[SigmaFinite (μ.trim (sigma_generated_le hY))] :
(μ A).toReal = μ[μ.condProb A Y] :=
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯)
(μ A).toReal =∫ (x : Ω), μ.condProb A Y x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
(μ A).toReal =∫ (x : Ω), μ.condProb A Y x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯)
(μ A).toReal =∫ (x : Ω), μ.condProb A Y x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
(μ A).toReal =∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯)
(μ A).toReal =∫ (x : Ω), μ.condProb A Y x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
(μ A).toReal =∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
(μ A).toReal =∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
∫⁻ (a : Ω), ↑‖A.indicator (fun x =>1) a‖₊∂μ <⊤
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
∫⁻ (a : Ω), ↑‖A.indicator (fun x =>1) a‖₊∂μ <⊤
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
∫⁻ (a : Ω), ↑‖A.indicator (fun x =>1) a‖₊∂μ <⊤
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω
↑‖A.indicator (fun x =>1) a‖₊= A.indicator (fun x =>1) a
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
∫⁻ (a : Ω), ↑‖A.indicator (fun x =>1) a‖₊∂μ <⊤
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∈ A
pos
↑‖A.indicator (fun x =>1) a‖₊= A.indicator (fun x =>1) a
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∉ A
↑‖A.indicator (fun x =>1) a‖₊= A.indicator (fun x =>1) a
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
∫⁻ (a : Ω), ↑‖A.indicator (fun x =>1) a‖₊∂μ <⊤
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∈ A
pos
↑‖A.indicator (fun x =>1) a‖₊= A.indicator (fun x =>1) a
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∈ A
pos
↑‖A.indicator (fun x =>1) a‖₊= A.indicator (fun x =>1) a
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∉ A
↑‖A.indicator (fun x =>1) a‖₊= A.indicator (fun x =>1) a
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∈ A
pos
↑‖A.indicator (fun x =>1) a‖₊= A.indicator (fun x =>1) a
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∈ A
pos
↑‖1‖₊= A.indicator (fun x =>1) a
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∈ A
pos
↑‖A.indicator (fun x =>1) a‖₊= A.indicator (fun x =>1) a
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∈ A
pos
↑‖1‖₊=1
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∈ A
pos
↑‖A.indicator (fun x =>1) a‖₊= A.indicator (fun x =>1) a
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∈ A
pos
↑1=1
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∈ A
pos
↑1=1
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∈ A
pos
↑‖A.indicator (fun x =>1) a‖₊= A.indicator (fun x =>1) a
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
∫⁻ (a : Ω), ↑‖A.indicator (fun x =>1) a‖₊∂μ <⊤
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∉ A
neg
↑‖A.indicator (fun x =>1) a‖₊= A.indicator (fun x =>1) a
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∉ A
neg
↑‖0‖₊= A.indicator (fun x =>1) a
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∉ A
neg
↑‖A.indicator (fun x =>1) a‖₊= A.indicator (fun x =>1) a
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∉ A
neg
↑‖0‖₊=0
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∉ A
neg
↑‖A.indicator (fun x =>1) a‖₊= A.indicator (fun x =>1) a
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∉ A
neg
↑0=0
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A a: Ω ha: a ∉ A
neg
↑0=0
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
∫⁻ (a : Ω), ↑‖A.indicator (fun x =>1) a‖₊∂μ <⊤
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A rmv_norm: ∀ (a : Ω), ↑‖A.indicator (fun x =>1) a‖₊= A.indicator (fun x =>1) a
∫⁻ (a : Ω), ↑‖A.indicator (fun x =>1) a‖₊∂μ <⊤
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A rmv_norm: ∀ (a : Ω), ↑‖A.indicator (fun x =>1) a‖₊= A.indicator (fun x =>1) a
∫⁻ (a : Ω), A.indicator (fun x =>1) a ∂μ <⊤
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A rmv_norm: ∀ (a : Ω), ↑‖A.indicator (fun x =>1) a‖₊= A.indicator (fun x =>1) a
∫⁻ (a : Ω), A.indicator (fun x =>1) a ∂μ <⊤
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
(μ A).toReal =∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A hI: HasFiniteIntegral (A.indicator fun x =>1) μ hAE: StronglyMeasurable (A.indicator fun x =>1)
∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
(μ A).toReal =∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A hI: HasFiniteIntegral (A.indicator fun x =>1) μ hAE: StronglyMeasurable (A.indicator fun x =>1)
∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A hI: HasFiniteIntegral (A.indicator fun x =>1) μ hAE: StronglyMeasurable (A.indicator fun x =>1)
∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A hI: HasFiniteIntegral (A.indicator fun x =>1) μ hAE: StronglyMeasurable (A.indicator fun x =>1)
AEStronglyMeasurable (A.indicator fun x =>1) μ
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A hI: HasFiniteIntegral (A.indicator fun x =>1) μ hAE: StronglyMeasurable (A.indicator fun x =>1)
∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A
(μ A).toReal =∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯)
(μ A).toReal =∫ (x : Ω), μ.condProb A Y x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
(μ A).toReal =∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
(μ A).toReal =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
(μ A).toReal =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯)
(μ A).toReal =∫ (x : Ω), μ.condProb A Y x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
(μ A).toReal =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
(μ A).toReal =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
∫ (a : Ω), A.indicator (fun x =>1) a ∂μ = (μ A).toReal
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
∫ (x : Ω) in A, 1∂μ = (μ A).toReal
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
∫ (x : Ω) in A, 1∂μ = (μ A).toReal
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
(μ A).toReal =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
∫ (x : Ω) in A, 1∂μ = (μ A).toReal
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
∫ (x : Ω) in A, 1∂μ = (μ A).toReal
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
0≤ᶠ[ae (μ.restrict A)] fun x =>1
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
∫ (x : Ω) in A, 1∂μ = (μ A).toReal
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ i✝: Ω
0 i✝≤ (fun x =>1) i✝
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
∫ (x : Ω) in A, 1∂μ = (μ A).toReal
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
(μ A).toReal =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ ae_pos: 0≤ᶠ[ae (μ.restrict A)] fun x =>1
∫ (x : Ω) in A, 1∂μ = (μ A).toReal
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ ae_pos: 0≤ᶠ[ae (μ.restrict A)] fun x =>1
(∫⁻ (a : Ω) in A, ENNReal.ofReal 1∂μ).toReal = (μ A).toReal
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ ae_pos: 0≤ᶠ[ae (μ.restrict A)] fun x =>1
∫ (x : Ω) in A, 1∂μ = (μ A).toReal
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ ae_pos: 0≤ᶠ[ae (μ.restrict A)] fun x =>1
(∫⁻ (a : Ω) in A, 1∂μ).toReal = (μ A).toReal
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ ae_pos: 0≤ᶠ[ae (μ.restrict A)] fun x =>1
∫ (x : Ω) in A, 1∂μ = (μ A).toReal
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ ae_pos: 0≤ᶠ[ae (μ.restrict A)] fun x =>1
(μ A).toReal = (μ A).toReal
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ ae_pos: 0≤ᶠ[ae (μ.restrict A)] fun x =>1
∫ (x : Ω) in A, 1∂μ = (μ A).toReal
Goals accomplished!🐙
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯)
(μ A).toReal =∫ (x : Ω), μ.condProb A Y x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ integral_A: ∫ (a : Ω), A.indicator (fun x =>1) a ∂μ = (μ A).toReal
(μ A).toReal =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ
Ω: Type u_1 F: Type u_2 inst✝²: MeasurableSpace F mΩ: MeasurableSpace Ω μ: Measure Ω Y: Ω→ F hY: Measurable Y inst✝¹: IsProbabilityMeasure μ A: Set Ω hA: MeasurableSet A inst✝: SigmaFinite (μ.trim ⋯) hAmΩ: MeasurableSet A total_exp: ∫ (x : Ω), (μ[A.indicator fun x =>1|gen_sigma Y]) x ∂μ =∫ (x : Ω), A.indicator (fun x =>1) x ∂μ integral_A: ∫ (a : Ω), A.indicator (fun x =>1) a ∂μ = (μ A).toReal