Built with Alectryon, running Lean4 v4.19.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use ⌘ instead of Ctrl.
/- - Created in 2024 by Gaëtan Serré-//-- https://github.com/gaetanserre/SBS-Proofs-/import Mathlib.Analysis.InnerProductSpace.Basic
local macro_rules |`($x ^$y) =>`(HPow.hPow $x $y)
open scoped RealInnerProductSpace
open BigOperators Finset
set_option maxHeartbeats 4000000/-=====================================RKHS SECTION=====================================-//- Here we define the product RKHS.-//- We provide a typeclass definition for a generic RKHS.-/class RKHS {E F : Type*} [RCLike F] (H : Set (E → F)) [NormedAddCommGroup H] [InnerProductSpace F H] where
k : E → E → F
memb : ∀ (x : E), k x ∈ H
repro : ∀ (f : H), ∀ (x : E), f.1 x = inner f ⟨k x, memb x⟩
def product_RKHS {α : Type*} (H : Set (α → ℝ)) [NormedAddCommGroup H] [InnerProductSpace ℝ H] [RKHS H] {d : ℕ} (_ : d ≠0) := Fin d → H
namespace RKHS
variable {α : Type*} {H : Set (α → ℝ)} [NormedAddCommGroup H] [InnerProductSpace ℝ H] [RKHS H]
variable {d : ℕ} {hd : d ≠0}
instance : Inner ℝ (product_RKHS H hd) where
inner := λ f g ↦∑ i, inner (f i) (g i)
instance : Norm (product_RKHS H hd) where
norm := λ f ↦ inner f f
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
‖f‖=0↔∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
mp
‖f‖=0→∀ (i : Fin d), f i =0
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
(∀ (i : Fin d), f i =0) →‖f‖=0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
‖f‖=0↔∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
mp
‖f‖=0→∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
mp
‖f‖=0→∀ (i : Fin d), f i =0
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
(∀ (i : Fin d), f i =0) →‖f‖=0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd norm_eq_0: ‖f‖=0
mp
∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
mp
‖f‖=0→∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd norm_eq_0: ‖f‖=0
mp
∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd norm_eq_0: ‖f‖=0
mp
∀ (i : Fin d), f i =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd norm_eq_0: inner f f =0
mp
∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd norm_eq_0: inner f f =0
mp
∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
mp
‖f‖=0→∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd norm_eq_0: inner f f =0
mp
∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd norm_eq_0: inner f f =0
mp
∀ (i : Fin d), f i =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd norm_eq_0: ∑ i, inner (f i) (f i) =0
mp
∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd norm_eq_0: ∑ i, inner (f i) (f i) =0
mp
∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
mp
‖f‖=0→∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd norm_eq_0: ∑ i, inner (f i) (f i) =0
mp
∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd norm_eq_0: ∑ x, ‖f x‖^2=0
mp
∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd norm_eq_0: ∑ x, ‖f x‖^2=0
mp
∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
mp
‖f‖=0→∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd norm_eq_0: ∑ x, ‖f x‖^2=0 i: Fin d
mp
f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
mp
‖f‖=0→∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd norm_eq_0: ∑ x, ‖f x‖^2=0 i: Fin d
mp
‖f i‖^2=0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
mp
‖f‖=0→∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd norm_eq_0: ∑ x, ‖f x‖^2=0 i: Fin d sq_norm_nonneg: ∀ i ∈ univ, 0≤‖f i‖^2
mp
‖f i‖^2=0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
mp
‖f‖=0→∀ (i : Fin d), f i =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
‖f‖=0↔∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0
mpr
‖f‖=0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
‖f‖=0↔∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0
mpr
‖f‖=0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0
mpr
‖f‖=0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0
mpr
inner f f =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
‖f‖=0↔∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0
mpr
inner f f =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0
mpr
inner f f =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0
mpr
∑ i, inner (f i) (f i) =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
‖f‖=0↔∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0
mpr
∑ i, inner (f i) (f i) =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0
∀ i ∈ univ, inner (f i) (f i) =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0
∀ i ∈ univ, inner (f i) (f i) =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0
∀ i ∈ univ, inner (f i) (f i) =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0 i: Fin d a✝: i ∈ univ
inner (f i) (f i) =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0
∀ i ∈ univ, inner (f i) (f i) =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0 i: Fin d a✝: i ∈ univ
inner (f i) (f i) =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0 i: Fin d a✝: i ∈ univ
inner 00=0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0 i: Fin d a✝: i ∈ univ
inner 00=0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0
∀ i ∈ univ, inner (f i) (f i) =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd
‖f‖=0↔∀ (i : Fin d), f i =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0 inner_eq_0: ∀ i ∈ univ, inner (f i) (f i) =0
mpr
∑ i, inner (f i) (f i) =0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0 inner_eq_0: ∀ i ∈ univ, inner (f i) (f i) =0
mpr
∑ x, 0=0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd hf: ∀ (i : Fin d), f i =0 inner_eq_0: ∀ i ∈ univ, inner (f i) (f i) =0
mpr
∑ x, 0=0
Goals accomplished!
α: Type u_1 H: Set (α → ℝ) inst✝²: NormedAddCommGroup ↑H inst✝¹: InnerProductSpace ℝ ↑H inst✝: RKHS H d: ℕ hd: d ≠0 f: product_RKHS H hd