Built with Alectryon, running Lean4 v4.19.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use ⌘ instead of Ctrl.
/- - Created in 2024 by Gaëtan Serré-//- - https://github.com/gaetanserre/SBS-Proofs-/import Mathlib.Analysis.Normed.Field.Instances
import Mathlib.Data.Real.StarOrdered
import Mathlib.Topology.MetricSpace.Polish
import SBSProofs.RKHS.Basic
import SBSProofs.Utils
open Classical MeasureTheory
local macro_rules |`($x ^$y) =>`(HPow.hPow $x $y)
set_option maxHeartbeats 600000variable {d : ℕ} {Ω : Set (Vector ℝ d)} [MeasureSpace Ω]
def L2 (μ : Measure Ω) [IsFiniteMeasure μ] := {f : Ω→ ℝ | MemLp f 2 μ}
def eigen := {v : ℕ → ℝ //∀ i, 0<= v i}
def f_repr (v : eigen) (e : ℕ →Ω→ ℝ) (f : Ω→ ℝ) (a : ℕ → ℝ) := (f =λ x ↦ (∑' i, (v.1 i) * (a i) * (e i x))) ∧ (∀ x, Summable (λ i ↦ (v.1 i) * (a i) * (e i x)))
/- We define a set of functions that depends on a finite measure μ. Each function is representable by a infinite sum.-/def H (v : eigen) (e : ℕ →Ω→ ℝ) (μ : Measure Ω) [IsFiniteMeasure μ] := {f | f ∈ L2 μ ∧∃ (a : ℕ → ℝ), (f_repr v e f a) ∧ Summable (λ i ↦ (v.1 i) * (a i)^2)}
def set_repr {v : eigen} {e : ℕ →Ω→ ℝ} {μ : Measure Ω} [IsFiniteMeasure μ] (f : H v e μ) := {a : ℕ → ℝ | (f_repr v e f.1 a) ∧ (Summable (λ i ↦ (v.1 i) * (a i)^2))}
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
(set_repr f).Nonempty
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) left✝: ↑f ∈ L2 μ a: ℕ → ℝ ha: f_repr v e (↑f) a ∧ Summable fun i =>↑v i * a i ^2
intro.intro
(set_repr f).Nonempty
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
(set_repr f).Nonempty
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) left✝: ↑f ∈ L2 μ a: ℕ → ℝ ha: f_repr v e (↑f) a ∧ Summable fun i =>↑v i * a i ^2
h
a ∈ set_repr f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
(set_repr f).Nonempty
Goals accomplished!
Goals accomplished!🐙
/- We assume that the the representative of each function in H is unique (property of v and e).-/axiom set_repr_unique {v : eigen} {e : ℕ →Ω→ ℝ} {μ : Measure Ω} [IsFiniteMeasure μ] {f : H v e μ} {a b : ℕ → ℝ} (ha : a ∈ set_repr f) (hb : b ∈ set_repr f) : a = b
Goals accomplished!
/- We assume that the product of two representative is summable.-/axiom product_summable {v : eigen} {e : ℕ →Ω→ ℝ} {μ : Measure Ω} [IsFiniteMeasure μ] (f g : H v e μ) : Summable (λ i ↦ (v.1 i) * ((set_repr_ne f).some i) * ((set_repr_ne g).some i))
/- We define the multiplication between a real number and a function in H as the pointwise product. We show that the result lies in H.-/namespace Ring
variable {v : eigen} {e : ℕ →Ω→ ℝ} {μ : Measure Ω} [IsFiniteMeasure μ] (f g : H v e μ)
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
f_repr v e (fun x => a *↑f x) fun i => a *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ
f_repr v e (fun x => a *↑f x) fun i => a *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
f_repr v e (fun x => a *↑f x) fun i => a *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ
f_repr v e (fun x => a *↑f x) fun i => a *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
f_repr v e (fun x => a *↑f x) fun i => a *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ
f_repr v e (fun x => a *↑f x) fun i => a *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
f_repr v e (fun x => a *↑f x) fun i => a *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f
_root_.f_repr v e (fun x => a *↑f x) fun i => a *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
f_repr v e (fun x => a *↑f x) fun i => a *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f
left
(fun x => a *↑f x) =fun x =>∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f
∀ (x : ↑Ω), Summable fun i =>↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
f_repr v e (fun x => a *↑f x) fun i => a *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f
left
(fun x => a *↑f x) =fun x =>∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f
left
(fun x => a *↑f x) =fun x =>∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f
∀ (x : ↑Ω), Summable fun i =>↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f x: ↑Ω
left.h
a *↑f x =∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f
left
(fun x => a *↑f x) =fun x =>∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x
left.h.intro.intro
a *↑f x =∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f
left
(fun x => a *↑f x) =fun x =>∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x
left.h.intro.intro
a *↑f x =∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x
g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x
g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x
g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω
h
g x =∑' (i : ℕ), ↑v i * a * h i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x
g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω
h
g x =∑' (i : ℕ), ↑v i * a * h i * e i x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω i: ℕ
↑v i * a * h i * e i x = a *↑v i * h i * e i x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x
g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x
h
g x =∑' (i : ℕ), ↑v i * a * h i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x
h
g x =∑' (i : ℕ), a *↑v i * h i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x
h
g x =∑' (i : ℕ), a *↑v i * h i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x
g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x
h
g x =∑' (i : ℕ), a *↑v i * h i * e i x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x
∀ (i : ℕ), a *↑v i * h i * e i x = a * (↑v i * h i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x
∀ (i : ℕ), a *↑v i * h i * e i x = a * (↑v i * h i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x
∀ (i : ℕ), a *↑v i * h i * e i x = a * (↑v i * h i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x i: ℕ
a *↑v i * h i * e i x = a * (↑v i * h i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x
∀ (i : ℕ), a *↑v i * h i * e i x = a * (↑v i * h i * e i x)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x
g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x summand_comm: ∀ (i : ℕ), a *↑v i * h i * e i x = a * (↑v i * h i * e i x)
h
g x =∑' (i : ℕ), a *↑v i * h i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x summand_comm: ∀ (i : ℕ), a *↑v i * h i * e i x = a * (↑v i * h i * e i x)
h
g x =∑' (i : ℕ), a * (↑v i * h i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x summand_comm: ∀ (i : ℕ), a *↑v i * h i * e i x = a * (↑v i * h i * e i x)
h
g x =∑' (i : ℕ), a * (↑v i * h i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x
g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x summand_comm: ∀ (i : ℕ), a *↑v i * h i * e i x = a * (↑v i * h i * e i x)
h
g x =∑' (i : ℕ), a * (↑v i * h i * e i x)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x summand_comm: ∀ (i : ℕ), a *↑v i * h i * e i x = a * (↑v i * h i * e i x)
h
g x =∑' (i : ℕ), a * (↑v i * h i * e i x)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x
g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x summand_comm: ∀ (i : ℕ), a *↑v i * h i * e i x = a * (↑v i * h i * e i x) const_out: ∑' (i : ℕ), a * (fun i =>↑v i * h i * e i x) i = a *∑' (i : ℕ), (fun i =>↑v i * h i * e i x) i
h
g x =∑' (i : ℕ), a * (↑v i * h i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x summand_comm: ∀ (i : ℕ), a *↑v i * h i * e i x = a * (↑v i * h i * e i x) const_out: ∑' (i : ℕ), a * (fun i =>↑v i * h i * e i x) i = a *∑' (i : ℕ), (fun i =>↑v i * h i * e i x) i
h
g x = a *∑' (i : ℕ), (fun i =>↑v i * h i * e i x) i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x summand_comm: ∀ (i : ℕ), a *↑v i * h i * e i x = a * (↑v i * h i * e i x) const_out: ∑' (i : ℕ), a * (fun i =>↑v i * h i * e i x) i = a *∑' (i : ℕ), (fun i =>↑v i * h i * e i x) i
h
g x =∑' (i : ℕ), a * (↑v i * h i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x✝: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x x: ↑Ω comm: ∀ (i : ℕ), ↑v i * a * h i * e i x = a *↑v i * h i * e i x summand_comm: ∀ (i : ℕ), a *↑v i * h i * e i x = a * (↑v i * h i * e i x) const_out: ∑' (i : ℕ), a * (fun i =>↑v i * h i * e i x) i = a *∑' (i : ℕ), (fun i =>↑v i * h i * e i x) i
h
g x = a *↑f x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f
left
(fun x => a *↑f x) =fun x =>∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x g_eq_tsum: g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x g_x: g x =∑' (i : ℕ), ↑v i * a * h i * e i x
left.h.intro.intro
a *↑f x =∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f
left
(fun x => a *↑f x) =fun x =>∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x g_eq_tsum: g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x g_x: g x =∑' (i : ℕ), ↑v i * a * h i * e i x
left.h.intro.intro
a *↑f x =∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x g_eq_tsum: g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x g_x: g x =∑' (i : ℕ), ↑v i * a * h i * e i x
left.h.intro.intro
a *↑f x =∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x g_eq_tsum: g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x g_x: g x =∑' (i : ℕ), ↑v i * a * h i * e i x i: ℕ
↑v i * a * h i * e i x =↑v i * (a * h i) * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x g_eq_tsum: g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x g_x: g x =∑' (i : ℕ), ↑v i * a * h i * e i x i: ℕ
↑v i * a * h i * e i x =↑v i * (a * h i) * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x g_eq_tsum: g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x g_x: g x =∑' (i : ℕ), ↑v i * a * h i * e i x
∀ (i : ℕ), ↑v i * a * h i * e i x =↑v i * (a * h i) * e i x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x g_eq_tsum: g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x g_x: g x =∑' (i : ℕ), ↑v i * (a * h i) * e i x
left.h.intro.intro
a *↑f x =∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f
left
(fun x => a *↑f x) =fun x =>∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x g_eq_tsum: g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x g_x: g x =∑' (i : ℕ), ↑v i * (a * h i) * e i x
left.h.intro.intro
a *↑f x =∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x g_eq_tsum: g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x g_x: g x =∑' (i : ℕ), ↑v i * (a * h i) * e i x
left.h.intro.intro
a *↑f x =∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x g_eq_tsum: g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x g_x: g x =∑' (i : ℕ), ↑v i * (a * h i) * e i x i: ℕ
a * h i = g_h i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x g_eq_tsum: g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x g_x: g x =∑' (i : ℕ), ↑v i * (a * h i) * e i x i: ℕ
a * h i = g_h i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x g_eq_tsum: g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x g_x: g x =∑' (i : ℕ), ↑v i * (a * h i) * e i x
∀ (i : ℕ), a * h i = g_h i
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ x: ↑Ω right✝¹: Summable fun i =>↑v i * h i ^2 f_repr: ↑f =fun x =>∑' (i : ℕ), ↑v i * h i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i * h i * e i x g_eq_tsum: g =fun x =>∑' (i : ℕ), ↑v i * a * h i * e i x g_x: g x =∑' (i : ℕ), ↑v i * g_h i * e i x
left.h.intro.intro
a *↑f x =∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f
left
(fun x => a *↑f x) =fun x =>∑' (i : ℕ), ↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
f_repr v e (fun x => a *↑f x) fun i => a *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f x: ↑Ω
right
Summable fun i =>↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
f_repr v e (fun x => a *↑f x) fun i => a *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f x: ↑Ω
right
Summable fun i =>↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f x: ↑Ω
(fun i =>↑v i * (fun i => a * h i) i * e i x) =fun i => a * (↑v i * h i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f x: ↑Ω
(fun i =>↑v i * (fun i => a * h i) i * e i x) =fun i => a * (↑v i * h i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f x: ↑Ω
(fun i =>↑v i * (fun i => a * h i) i * e i x) =fun i => a * (↑v i * h i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f x: ↑Ω i: ℕ
h
↑v i * (fun i => a * h i) i * e i x = a * (↑v i * h i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f x: ↑Ω
(fun i =>↑v i * (fun i => a * h i) i * e i x) =fun i => a * (↑v i * h i * e i x)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
f_repr v e (fun x => a *↑f x) fun i => a *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f x: ↑Ω remove_function: (fun i =>↑v i * (fun i => a * h i) i * e i x) =fun i => a * (↑v i * h i * e i x)
right
Summable fun i =>↑v i * (fun i => a *⋯.some i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f x: ↑Ω remove_function: (fun i =>↑v i * (fun i => a * h i) i * e i x) =fun i => a * (↑v i * h i * e i x)
right
Summable fun i => a * (↑v i * h i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ f_repr: h ∈ set_repr f x: ↑Ω remove_function: (fun i =>↑v i * (fun i => a * h i) i * e i x) =fun i => a * (↑v i * h i * e i x)
right
Summable fun i => a * (↑v i * h i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
f_repr v e (fun x => a *↑f x) fun i => a *⋯.some i
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
Summable fun i =>↑v i * (fun i => a *⋯.some i) i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ
Summable fun i =>↑v i * (fun i => a *⋯.some i) i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
Summable fun i =>↑v i * (fun i => a *⋯.some i) i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ
Summable fun i =>↑v i * (fun i => a *⋯.some i) i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
Summable fun i =>↑v i * (fun i => a *⋯.some i) i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ set_repr: h ∈ _root_.set_repr f
Summable fun i =>↑v i * (fun i => a *⋯.some i) i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
Summable fun i =>↑v i * (fun i => a *⋯.some i) i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2
intro
Summable fun i =>↑v i * (fun i => a *⋯.some i) i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
Summable fun i =>↑v i * (fun i => a *⋯.some i) i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2
intro
Summable fun i =>↑v i * (fun i => a *⋯.some i) i ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2
(fun i =>↑v i * g_h i ^2) =fun i => a ^2* (↑v i * h i ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2
(fun i =>↑v i * g_h i ^2) =fun i => a ^2* (↑v i * h i ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2
(fun i =>↑v i * g_h i ^2) =fun i => a ^2* (↑v i * h i ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2 i: ℕ
h
↑v i * g_h i ^2= a ^2* (↑v i * h i ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2
(fun i =>↑v i * g_h i ^2) =fun i => a ^2* (↑v i * h i ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2 i: ℕ
h
↑v i * g_h i ^2= a ^2* (↑v i * h i ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2 i: ℕ
h
↑v i * g_h i ^2= a ^2* (↑v i * h i ^2)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2 i: ℕ
h
↑v i * (a * h i) ^2= a ^2* (↑v i * h i ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2
(fun i =>↑v i * g_h i ^2) =fun i => a ^2* (↑v i * h i ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2 i: ℕ
h
↑v i * (a * h i) ^2= a ^2* (↑v i * h i ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2 i: ℕ
h
↑v i * (a ^2* h i ^2) = a ^2* (↑v i * h i ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2 i: ℕ
h
↑v i * (a ^2* h i ^2) = a ^2* (↑v i * h i ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2
(fun i =>↑v i * g_h i ^2) =fun i => a ^2* (↑v i * h i ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2 i: ℕ
h
↑v i * (a ^2* h i ^2) = a ^2* (↑v i * h i ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2 i: ℕ
h
↑v i * (a ^2* h i ^2) = a ^2* (↑v i * h i ^2)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
Summable fun i =>↑v i * (fun i => a *⋯.some i) i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2 comm_fun: (fun i =>↑v i * g_h i ^2) =fun i => a ^2* (↑v i * h i ^2)
intro
Summable fun i =>↑v i * (fun i => a *⋯.some i) i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2 comm_fun: (fun i =>↑v i * g_h i ^2) =fun i => a ^2* (↑v i * h i ^2)
intro
Summable fun i => a ^2* (↑v i * h i ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ left✝: f_repr v e (↑f) h h_summable: Summable fun i =>↑v i * h i ^2 comm_fun: (fun i =>↑v i * g_h i ^2) =fun i => a ^2* (↑v i * h i ^2)
intro
Summable fun i => a ^2* (↑v i * h i ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
Summable fun i =>↑v i * (fun i => a *⋯.some i) i ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
(fun x => a *↑f x) ∈ H v e μ
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ
(fun x => a *↑f x) ∈ H v e μ
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
(fun x => a *↑f x) ∈ H v e μ
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ g_in_L2: g ∈ L2 μ
(fun x => a *↑f x) ∈ H v e μ
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
(fun x => a *↑f x) ∈ H v e μ
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ g_in_L2: g ∈ L2 μ h:= ⋯.some: ℕ → ℝ
(fun x => a *↑f x) ∈ H v e μ
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
(fun x => a *↑f x) ∈ H v e μ
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ g:= fun x => a *↑f x: ↑Ω→ ℝ g_in_L2: g ∈ L2 μ h:= ⋯.some: ℕ → ℝ g_h:= fun i => a * h i: ℕ → ℝ
(fun x => a *↑f x) ∈ H v e μ
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a: ℝ
(fun x => a *↑f x) ∈ H v e μ
Goals accomplished!
Goals accomplished!🐙
instance : HMul ℝ (H v e μ) (H v e μ) where
hMul := λ a f ↦ ⟨λ x ↦ a * f.1 x, mul_in_H f a⟩
instance : HSMul ℝ (H v e μ) (H v e μ) where
hSMul := λ r f ↦ r * f
end Ring
/- We define the sum between two functions in H as the pointwise sum. We show that the result lies in H. We also define the 0 function of H. We show several properties on the addition.-/namespace Group
variable {v : eigen} {e : ℕ →Ω→ ℝ} {μ : Measure Ω} [IsFiniteMeasure μ] (f g : H v e μ)
Goals accomplished!
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
Summable fun i =>↑v i * (⋯.some i +⋯.some i) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ
Summable fun i =>↑v i * (⋯.some i +⋯.some i) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
Summable fun i =>↑v i * (⋯.some i +⋯.some i) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ
Summable fun i =>↑v i * (⋯.some i +⋯.some i) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
Summable fun i =>↑v i * (⋯.some i +⋯.some i) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ
Summable fun i =>↑v i * (⋯.some i +⋯.some i) ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ
(fun i =>↑v i * (a_f i + a_g i) ^2) =fun i =>↑v i * a_f i * a_f i +2* (↑v i * a_f i * a_g i) +↑v i * a_g i * a_g i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ
(fun i =>↑v i * (a_f i + a_g i) ^2) =fun i =>↑v i * a_f i * a_f i +2* (↑v i * a_f i * a_g i) +↑v i * a_g i * a_g i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ
(fun i =>↑v i * (a_f i + a_g i) ^2) =fun i =>↑v i * a_f i * a_f i +2* (↑v i * a_f i * a_g i) +↑v i * a_g i * a_g i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ i: ℕ
h
↑v i * (a_f i + a_g i) ^2=↑v i * a_f i * a_f i +2* (↑v i * a_f i * a_g i) +↑v i * a_g i * a_g i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ
(fun i =>↑v i * (a_f i + a_g i) ^2) =fun i =>↑v i * a_f i * a_f i +2* (↑v i * a_f i * a_g i) +↑v i * a_g i * a_g i
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
Summable fun i =>↑v i * (⋯.some i +⋯.some i) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ f_eq: (fun i =>↑v i * (a_f i + a_g i) ^2) =fun i =>↑v i * a_f i * a_f i +2* (↑v i * a_f i * a_g i) +↑v i * a_g i * a_g i
Summable fun i =>↑v i * (⋯.some i +⋯.some i) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ f_eq: (fun i =>↑v i * (a_f i + a_g i) ^2) =fun i =>↑v i * a_f i * a_f i +2* (↑v i * a_f i * a_g i) +↑v i * a_g i * a_g i
Summable fun i =>↑v i * a_f i * a_f i +2* (↑v i * a_f i * a_g i) +↑v i * a_g i * a_g i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ f_eq: (fun i =>↑v i * (a_f i + a_g i) ^2) =fun i =>↑v i * a_f i * a_f i +2* (↑v i * a_f i * a_g i) +↑v i * a_g i * a_g i
Summable fun i =>↑v i * a_f i * a_f i +2* (↑v i * a_f i * a_g i) +↑v i * a_g i * a_g i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
Summable fun i =>↑v i * (⋯.some i +⋯.some i) ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
f_repr v e (fun x =>↑f x +↑g x) fun i =>⋯.some i +⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ
f_repr v e (fun x =>↑f x +↑g x) fun i => a_f i +⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
f_repr v e (fun x =>↑f x +↑g x) fun i =>⋯.some i +⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ
f_repr v e (fun x =>↑f x +↑g x) fun i => a_f i + a_g i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
f_repr v e (fun x =>↑f x +↑g x) fun i =>⋯.some i +⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2
intro
f_repr v e (fun x =>↑f x +↑g x) fun i => a_f i + a_g i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
f_repr v e (fun x =>↑f x +↑g x) fun i =>⋯.some i +⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2
intro.intro
f_repr v e (fun x =>↑f x +↑g x) fun i => a_f i + a_g i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
f_repr v e (fun x =>↑f x +↑g x) fun i =>⋯.some i +⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2
intro.intro
f_repr v e (fun x =>↑f x +↑g x) fun i => a_f i + a_g i
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2
intro.intro
f_repr v e (fun x =>↑f x +↑g x) fun i => a_f i + a_g i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 x: ↑Ω i: ℕ
↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 x: ↑Ω i: ℕ
↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2
intro.intro
f_repr v e (fun x =>↑f x +↑g x) fun i => a_f i + a_g i
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
f_repr v e (fun x =>↑f x +↑g x) fun i =>⋯.some i +⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x
intro.intro.left
(fun x =>↑f x +↑g x) =fun x =>∑' (i : ℕ), ↑v i * (fun i => a_f i + a_g i) i * e i x
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x
∀ (x : ↑Ω), Summable fun i =>↑v i * (fun i => a_f i + a_g i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
f_repr v e (fun x =>↑f x +↑g x) fun i =>⋯.some i +⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x
intro.intro.left
(fun x =>↑f x +↑g x) =fun x =>∑' (i : ℕ), ↑v i * (fun i => a_f i + a_g i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x
intro.intro.left
(fun x =>↑f x +↑g x) =fun x =>∑' (i : ℕ), ↑v i * (fun i => a_f i + a_g i) i * e i x
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x
∀ (x : ↑Ω), Summable fun i =>↑v i * (fun i => a_f i + a_g i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x x: ↑Ω
intro.intro.left.h
↑f x +↑g x =∑' (i : ℕ), ↑v i * (fun i => a_f i + a_g i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x
intro.intro.left
(fun x =>↑f x +↑g x) =fun x =>∑' (i : ℕ), ↑v i * (fun i => a_f i + a_g i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x x: ↑Ω
intro.intro.left.h
↑f x +↑g x =∑' (i : ℕ), ↑v i * (a_f i + a_g i) * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x x: ↑Ω
intro.intro.left.h
↑f x +↑g x =∑' (i : ℕ), (↑v i * a_f i * e i x +↑v i * a_g i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x x: ↑Ω
intro.intro.left.h
↑f x +↑g x =∑' (i : ℕ), (↑v i * a_f i * e i x +↑v i * a_g i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x
intro.intro.left
(fun x =>↑f x +↑g x) =fun x =>∑' (i : ℕ), ↑v i * (fun i => a_f i + a_g i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x x: ↑Ω
intro.intro.left.h
↑f x +↑g x =∑' (i : ℕ), (↑v i * a_f i * e i x +↑v i * a_g i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x x: ↑Ω
intro.intro.left.h
↑f x +↑g x =∑' (b : ℕ), ↑v b *⋯.some b * e b x +∑' (b : ℕ), ↑v b *⋯.some b * e b x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x x: ↑Ω
intro.intro.left.h
↑f x +↑g x =∑' (i : ℕ), (↑v i * a_f i * e i x +↑v i * a_g i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x x: ↑Ω
intro.intro.left.h
↑f x +↑g x =↑f x +∑' (b : ℕ), ↑v b *⋯.some b * e b x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x x: ↑Ω
intro.intro.left.h
↑f x +↑g x =∑' (i : ℕ), (↑v i * a_f i * e i x +↑v i * a_g i * e i x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x x: ↑Ω
intro.intro.left.h
↑f x +↑g x =↑f x +↑g x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x x: ↑Ω
intro.intro.left.h
↑f x +↑g x =∑' (i : ℕ), (↑v i * a_f i * e i x +↑v i * a_g i * e i x)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
f_repr v e (fun x =>↑f x +↑g x) fun i =>⋯.some i +⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x x: ↑Ω
intro.intro.right
Summable fun i =>↑v i * (fun i => a_f i + a_g i) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
f_repr v e (fun x =>↑f x +↑g x) fun i =>⋯.some i +⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x x: ↑Ω
intro.intro.right
Summable fun i =>↑v i * (a_f i + a_g i) * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x x: ↑Ω
intro.intro.right
Summable fun i =>↑v i * a_f i * e i x +↑v i * a_g i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ af_repr: f_repr v e ↑f ⋯.some right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ag_repr: f_repr v e ↑g ⋯.some right✝: Summable fun i =>↑v i *⋯.some i ^2 summand_distrib: ∀ (x : ↑Ω) (i : ℕ), ↑v i * (a_f i + a_g i) * e i x =↑v i * a_f i * e i x +↑v i * a_g i * e i x x: ↑Ω
intro.intro.right
Summable fun i =>↑v i * a_f i * e i x +↑v i * a_g i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
f_repr v e (fun x =>↑f x +↑g x) fun i =>⋯.some i +⋯.some i
Goals accomplished!
Goals accomplished!🐙
/- We define the 0 of H as pointwise 0 function. We show that it lies in H.-/def zero : Ω→ ℝ := λ _ ↦0omit [MeasureSpace ↑Ω] in
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ
f_repr v e zero fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ
f_repr v e zero fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ
f_repr v e zero fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ
left
zero =fun x =>∑' (i : ℕ), ↑v i * (fun x =>0) i * e i x
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ
∀ (x : ↑Ω), Summable fun i =>↑v i * (fun x =>0) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ
f_repr v e zero fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ
left
zero =fun x =>∑' (i : ℕ), ↑v i * (fun x =>0) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ
left
zero =fun x =>∑' (i : ℕ), ↑v i * (fun x =>0) i * e i x
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ
∀ (x : ↑Ω), Summable fun i =>↑v i * (fun x =>0) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ x: ↑Ω
left.h
zero x =∑' (i : ℕ), ↑v i * (fun x =>0) i * e i x
/- have summand_zero : ∀ i, v.1 i * a i * e i x = 0 := by { intro i rw [show v.1 i * a i * e i x = v.1 i * 0 * e i x by rfl] ring } -/
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ x: ↑Ω
left.h
0=∑' (i : ℕ), 0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ
left
zero =fun x =>∑' (i : ℕ), ↑v i * (fun x =>0) i * e i x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ
f_repr v e zero fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ x: ↑Ω
right
Summable fun i =>↑v i * (fun x =>0) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ
f_repr v e zero fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ x: ↑Ω
right
Summable fun i =>↑v i * (fun x =>0) i * e i x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ x: ↑Ω
(fun i =>↑v i * a i * e i x) =fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ x: ↑Ω
(fun i =>↑v i * a i * e i x) =fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ x: ↑Ω
(fun i =>↑v i * a i * e i x) =fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ x: ↑Ω i: ℕ
h
↑v i * a i * e i x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ x: ↑Ω
(fun i =>↑v i * a i * e i x) =fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ x: ↑Ω i: ℕ
h
↑v i * a i * e i x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ x: ↑Ω i: ℕ
h
↑v i * a i * e i x =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ x: ↑Ω i: ℕ
h
↑v i *0* e i x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ x: ↑Ω
(fun i =>↑v i * a i * e i x) =fun x =>0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ
f_repr v e zero fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ x: ↑Ω null_function: (fun i =>↑v i * a i * e i x) =fun x =>0
right
Summable fun i =>↑v i * (fun x =>0) i * e i x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ x: ↑Ω null_function: (fun i =>↑v i * a i * e i x) =fun x =>0
right
Summable fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ a:= fun x =>0: ℕ → ℝ x: ↑Ω null_function: (fun i =>↑v i * a i * e i x) =fun x =>0
right
Summable fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ
f_repr v e zero fun x =>0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
v: eigen
Summable fun i =>↑v i *0^2
Goals accomplished!
v: eigen
Summable fun i =>↑v i *0^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
v: eigen
(fun i =>↑v i *0^2) =fun x =>0
Goals accomplished!
v: eigen
(fun i =>↑v i *0^2) =fun x =>0
Goals accomplished!
v: eigen
(fun i =>↑v i *0^2) =fun x =>0
Goals accomplished!
v: eigen i: ℕ
h
↑v i *0^2=0
Goals accomplished!
v: eigen
(fun i =>↑v i *0^2) =fun x =>0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
v: eigen
Summable fun i =>↑v i *0^2
Goals accomplished!
v: eigen zero_fun: (fun i =>↑v i *0^2) =fun x =>0
Summable fun i =>↑v i *0^2
Goals accomplished!
v: eigen zero_fun: (fun i =>↑v i *0^2) =fun x =>0
Summable fun x =>0
Goals accomplished!
v: eigen zero_fun: (fun i =>↑v i *0^2) =fun x =>0
Summable fun x =>0
Goals accomplished!
v: eigen
Summable fun i =>↑v i *0^2
Goals accomplished!
v: eigen zero_fun: (fun i =>↑v i *0^2) =fun x =>0 hf: ∀ b ∉∅, (fun x =>0) b =0
Summable fun x =>0
Goals accomplished!
v: eigen
Summable fun i =>↑v i *0^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
instance : Zero (H v e μ) where
zero := ⟨zero, zero_in_H⟩
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ
⋯.some =fun x =>0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ
a ∈ set_repr 0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ
a ∈ set_repr 0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ
a ∈ set_repr 0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ
Summable fun i =>↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ
a ∈ set_repr 0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ
Summable fun i =>↑v i * a i ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ
(fun i =>↑v i * a i ^2) =fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ
(fun i =>↑v i * a i ^2) =fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ
(fun i =>↑v i * a i ^2) =fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ i: ℕ
h
↑v i * a i ^2=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ
(fun i =>↑v i * a i ^2) =fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ i: ℕ
h
↑v i * a i ^2=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ i: ℕ
h
↑v i * a i ^2=0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ i: ℕ
h
↑v i *0^2=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ
(fun i =>↑v i * a i ^2) =fun x =>0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ
a ∈ set_repr 0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ null_function: (fun i =>↑v i * a i ^2) =fun x =>0
Summable fun i =>↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ null_function: (fun i =>↑v i * a i ^2) =fun x =>0
Summable fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ null_function: (fun i =>↑v i * a i ^2) =fun x =>0
Summable fun x =>0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a:= fun x =>0: ℕ → ℝ
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
(fun x =>↑f x +↑g x) ∈ H v e μ
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) h:= fun i =>⋯.some i +⋯.some i: ℕ → ℝ
(fun x =>↑f x +↑g x) ∈ H v e μ
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
(fun x =>↑f x +↑g x) ∈ H v e μ
Goals accomplished!
Goals accomplished!🐙
instance : HAdd (H v e μ) (H v e μ) (H v e μ) where
hAdd := λ f g ↦ ⟨(λ x ↦ f.1 x + g.1 x), add_in_H f g⟩
instance : HSub (H v e μ) (H v e μ) (H v e μ) where
hSub := λ f g ↦ f + (-1 : ℝ) * g
instance : Neg (H v e μ) where
neg := λ f ↦ (-1 : ℝ) * f
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
a + b + c = a + (b + c)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a + b + c) x =↑(a + (b + c)) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
a + b + c = a + (b + c)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a + b + c) x =↑(a + (b + c)) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a + b + c) x =↑(a + (b + c)) x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑a x +↑b x +↑c x =↑(a + (b + c)) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
a + b + c = a + (b + c)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑a x +↑b x +↑c x =↑(a + (b + c)) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑a x +↑b x +↑c x =↑(a + (b + c)) x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑a x +↑b x +↑c x =↑a x + (↑b x +↑c x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
a + b + c = a + (b + c)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
a + b = b + a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) x: ↑Ω
a.h
↑(a + b) x =↑(b + a) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
a + b = b + a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) x: ↑Ω
a.h
↑(a + b) x =↑(b + a) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) x: ↑Ω
a.h
↑(a + b) x =↑(b + a) x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) x: ↑Ω
a.h
↑a x +↑b x =↑(b + a) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
a + b = b + a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) x: ↑Ω
a.h
↑a x +↑b x =↑(b + a) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) x: ↑Ω
a.h
↑a x +↑b x =↑(b + a) x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) x: ↑Ω
a.h
↑a x +↑b x =↑b x +↑a x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
a + b = b + a
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a +0= a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑(a +0) x =↑a x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a +0= a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑(a +0) x =↑a x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑(a +0) x =↑a x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑a x +↑0 x =↑a x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a +0= a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑a x +↑0 x =↑a x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑a x +↑0 x =↑a x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑a x +0=↑a x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a +0= a
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
0+ a = a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
0+ a = a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a +0= a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a +0= a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
0+ a = a
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
-a + a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
-a + a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
-a + a =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
-1* a + a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
-a + a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑(-1* a + a) x =↑0 x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
-a + a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑(-1* a + a) x =↑0 x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑(-1* a + a) x =↑0 x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑(-1* a) x +↑a x =↑0 x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
-a + a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑(-1* a) x +↑a x =↑0 x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑(-1* a) x +↑a x =↑0 x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
-1*↑a x +↑a x =↑0 x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
-a + a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
-1*↑a x +↑a x =↑0 x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
-1*↑a x +↑a x =↑0 x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
-1*↑a x +↑a x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
-a + a =0
Goals accomplished!
Goals accomplished!🐙
end Group
/- We define a function : H × H → ℝ. The purpose of the following is to prove that H endowed with this function is a inner product space.-/noncomputabledef H_inner {v : eigen} {e : ℕ →Ω→ ℝ} {μ : Measure Ω} [IsFiniteMeasure μ] (f g : H v e μ) : ℝ := ∑' i, (v.1 i) * ((set_repr_ne f).some i) * ((set_repr_ne g).some i)
/- - We show properties on the inner product of H and the induced norm.-/namespace Inner
open Ring Group
variable {v : eigen} {e : ℕ →Ω→ ℝ} {μ : Measure Ω} [IsFiniteMeasure μ] (f g : H v e μ)
noncomputableinstance : Inner ℝ (H v e μ) where
inner := H_inner
noncomputableinstance : Norm (H v e μ) where
norm := λ f ↦ Real.sqrt (inner f f)
noncomputableinstance : Dist (H v e μ) where
dist := λ f g ↦ norm (f - g)
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ
inner (a * f) g = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ
inner (a * f) g = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ
inner (a * f) g = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ
inner (a * f) g = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ
inner (a * f) g = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f)
inner (a * f) g = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ
inner (a * f) g = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f)
inner (a * f) g = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f)
inner (a * f) g = a * inner f g
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f)
H_inner (a * f) g = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ
inner (a * f) g = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f)
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ
inner (a * f) g = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f)
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f)
∑' (i : ℕ), ↑v i * h_af i *⋯.some i = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f)
∑' (i : ℕ), ↑v i * h_af i *⋯.some i = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ
inner (a * f) g = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f)
∑' (i : ℕ), ↑v i * h_af i *⋯.some i = a * inner f g
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f)
∀ (i : ℕ), ↑v i * h_af i *⋯.some i = a *↑v i * h i *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f)
∀ (i : ℕ), ↑v i * h_af i *⋯.some i = a *↑v i * h i *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f)
∀ (i : ℕ), ↑v i * h_af i *⋯.some i = a *↑v i * h i *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f) i: ℕ
↑v i * h_af i *⋯.some i = a *↑v i * h i *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f)
∀ (i : ℕ), ↑v i * h_af i *⋯.some i = a *↑v i * h i *⋯.some i
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ
inner (a * f) g = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f) comm_summand: ∀ (i : ℕ), ↑v i * h_af i *⋯.some i = a *↑v i * h i *⋯.some i
∑' (i : ℕ), ↑v i * h_af i *⋯.some i = a * inner f g
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f) comm_summand: ∀ (i : ℕ), ↑v i * h_af i *⋯.some i = a *↑v i * h i *⋯.some i
∀ (i : ℕ), a *↑v i * h i *⋯.some i = a * (fun i =>↑v i * h i *⋯.some i) i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f) comm_summand: ∀ (i : ℕ), ↑v i * h_af i *⋯.some i = a *↑v i * h i *⋯.some i
∀ (i : ℕ), a *↑v i * h i *⋯.some i = a * (fun i =>↑v i * h i *⋯.some i) i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f) comm_summand: ∀ (i : ℕ), ↑v i * h_af i *⋯.some i = a *↑v i * h i *⋯.some i
∀ (i : ℕ), a *↑v i * h i *⋯.some i = a * (fun i =>↑v i * h i *⋯.some i) i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f) comm_summand: ∀ (i : ℕ), ↑v i * h_af i *⋯.some i = a *↑v i * h i *⋯.some i i: ℕ
a *↑v i * h i *⋯.some i = a * (fun i =>↑v i * h i *⋯.some i) i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f) comm_summand: ∀ (i : ℕ), ↑v i * h_af i *⋯.some i = a *↑v i * h i *⋯.some i
∀ (i : ℕ), a *↑v i * h i *⋯.some i = a * (fun i =>↑v i * h i *⋯.some i) i
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ
inner (a * f) g = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f) comm_summand: ∀ (i : ℕ), ↑v i * h_af i *⋯.some i = a *↑v i * h i *⋯.some i lambda_comm: ∀ (i : ℕ), a *↑v i * h i *⋯.some i = a * (fun i =>↑v i * h i *⋯.some i) i
∑' (i : ℕ), ↑v i * h_af i *⋯.some i = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f) comm_summand: ∀ (i : ℕ), ↑v i * h_af i *⋯.some i = a *↑v i * h i *⋯.some i lambda_comm: ∀ (i : ℕ), a *↑v i * h i *⋯.some i = a * (fun i =>↑v i * h i *⋯.some i) i
∑' (i : ℕ), a *↑v i * h i *⋯.some i = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f) comm_summand: ∀ (i : ℕ), ↑v i * h_af i *⋯.some i = a *↑v i * h i *⋯.some i lambda_comm: ∀ (i : ℕ), a *↑v i * h i *⋯.some i = a * (fun i =>↑v i * h i *⋯.some i) i
∑' (i : ℕ), ↑v i * h_af i *⋯.some i = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f) comm_summand: ∀ (i : ℕ), ↑v i * h_af i *⋯.some i = a *↑v i * h i *⋯.some i lambda_comm: ∀ (i : ℕ), a *↑v i * h i *⋯.some i = a * (fun i =>↑v i * h i *⋯.some i) i
∑' (i : ℕ), a * (↑v i * h i *⋯.some i) = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ h:= ⋯.some: ℕ → ℝ h_af:= fun i => a * h i: ℕ → ℝ h_af_in: h_af ∈ set_repr (a * f) comm_summand: ∀ (i : ℕ), ↑v i * h_af i *⋯.some i = a *↑v i * h i *⋯.some i lambda_comm: ∀ (i : ℕ), a *↑v i * h i *⋯.some i = a * (fun i =>↑v i * h i *⋯.some i) i
∑' (i : ℕ), a * (↑v i * h i *⋯.some i) = a * inner f g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) a: ℝ
inner (a * f) g = a * inner f g
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ)
inner (f + g) h = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ)
inner (f + g) h = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ)
inner (f + g) h = inner f h + inner g h
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ)
H_inner (f + g) h = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ)
inner (f + g) h = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ)
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ)
inner (f + g) h = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ)
inner (f + g) h = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ)
∑' (i : ℕ), ↑v i *⋯.some i * a_h i = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ)
inner (f + g) h = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ
∑' (i : ℕ), ↑v i *⋯.some i * a_h i = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ)
inner (f + g) h = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g)
∑' (i : ℕ), ↑v i *⋯.some i * a_h i = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ)
inner (f + g) h = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g)
∑' (i : ℕ), ↑v i *⋯.some i * a_h i = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g)
∑' (i : ℕ), ↑v i * a_fg i * a_h i = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g)
∑' (i : ℕ), ↑v i * a_fg i * a_h i = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ)
inner (f + g) h = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g)
∑' (i : ℕ), ↑v i * a_fg i * a_h i = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g)
∑' (i : ℕ), ↑v i * a_fg i * a_h i = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g) i: ℕ
↑v i * a_fg i * a_h i =↑v i * (a_f i + a_g i) * a_h i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g) i: ℕ
↑v i * a_fg i * a_h i =↑v i * (a_f i + a_g i) * a_h i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g)
∀ (i : ℕ), ↑v i * a_fg i * a_h i =↑v i * (a_f i + a_g i) * a_h i
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g)
∑' (i : ℕ), ↑v i * (a_f i + a_g i) * a_h i = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ)
inner (f + g) h = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g)
∑' (i : ℕ), ↑v i * (a_f i + a_g i) * a_h i = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g)
∑' (i : ℕ), ↑v i * (a_f i + a_g i) * a_h i = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g) i: ℕ
↑v i * (a_f i + a_g i) * a_h i =↑v i * a_f i * a_h i +↑v i * a_g i * a_h i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g) i: ℕ
↑v i * (a_f i + a_g i) * a_h i =↑v i * a_f i * a_h i +↑v i * a_g i * a_h i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g)
∀ (i : ℕ), ↑v i * (a_f i + a_g i) * a_h i =↑v i * a_f i * a_h i +↑v i * a_g i * a_h i
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g)
∑' (i : ℕ), (↑v i * a_f i * a_h i +↑v i * a_g i * a_h i) = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ)
inner (f + g) h = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g)
∑' (i : ℕ), (↑v i * a_f i * a_h i +↑v i * a_g i * a_h i) = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g)
∑' (b : ℕ), ↑v b *⋯.some b *⋯.some b +∑' (b : ℕ), ↑v b *⋯.some b *⋯.some b = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_h:= ⋯.some: ℕ → ℝ a_fg:= fun i => a_f i + a_g i: ℕ → ℝ a_fg_repr: a_fg ∈ set_repr (f + g)
∑' (b : ℕ), ↑v b *⋯.some b *⋯.some b +∑' (b : ℕ), ↑v b *⋯.some b *⋯.some b = inner f h + inner g h
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g, h: ↑(H v e μ)
inner (f + g) h = inner f h + inner g h
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g = inner g f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g = inner g f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g = inner g f
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
H_inner f g = inner g f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g = inner g f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i = inner g f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g = inner g f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i = inner g f
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) i: ℕ
↑v i *⋯.some i *⋯.some i =↑v i *⋯.some i *⋯.some i
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g = inner g f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) comm: ∀ (i : ℕ), ↑v i *⋯.some i *⋯.some i =↑v i *⋯.some i *⋯.some i
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i = inner g f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) comm: ∀ (i : ℕ), ↑v i *⋯.some i *⋯.some i =↑v i *⋯.some i *⋯.some i
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i = inner g f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) comm: ∀ (i : ℕ), ↑v i *⋯.some i *⋯.some i =↑v i *⋯.some i *⋯.some i
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i = inner g f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g = inner g f
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
0≤ inner f f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
0≤ inner f f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
0≤ inner f f
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
0≤ H_inner f f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
0≤ inner f f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
0≤∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
0≤ inner f f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ
0≤∑' (i : ℕ), ↑v i * a i * a i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
0≤ inner f f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ
0≤∑' (i : ℕ), ↑v i * a i * a i
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ
∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ
∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ
∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ i: ℕ
↑v i * a i * a i =↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ
∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
0≤ inner f f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2
0≤∑' (i : ℕ), ↑v i * a i * a i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2
0≤∑' (i : ℕ), ↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2
0≤∑' (i : ℕ), ↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
0≤ inner f f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2
0≤∑' (i : ℕ), ↑v i * a i ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2
∀ (i : ℕ), 0≤↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2
∀ (i : ℕ), 0≤↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2
∀ (i : ℕ), 0≤↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 i: ℕ
0≤↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2
∀ (i : ℕ), 0≤↑v i * a i ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
0≤ inner f f
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
0≤‖f‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
0≤‖f‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
0≤‖f‖
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
0≤√(inner f f)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
0≤‖f‖
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f 0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f 0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f 0=0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
H_inner f 0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f 0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f 0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
∑' (i : ℕ), ↑v i *⋯.some i * (fun x =>0) i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
∑' (i : ℕ), ↑v i *⋯.some i * (fun x =>0) i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f 0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
∑' (i : ℕ), ↑v i *⋯.some i * (fun x =>0) i =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
∀ (i : ℕ), ↑v i *⋯.some i * (fun i =>0) i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
∀ (i : ℕ), ↑v i *⋯.some i * (fun i =>0) i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
∀ (i : ℕ), ↑v i *⋯.some i * (fun i =>0) i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) i: ℕ
↑v i *⋯.some i * (fun i =>0) i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
∀ (i : ℕ), ↑v i *⋯.some i * (fun i =>0) i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) i: ℕ
↑v i *⋯.some i * (fun i =>0) i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) i: ℕ
↑v i *⋯.some i * (fun i =>0) i =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) i: ℕ
↑v i *⋯.some i *0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
∀ (i : ℕ), ↑v i *⋯.some i * (fun i =>0) i =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f 0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) summand_eq_zero: ∀ (i : ℕ), ↑v i *⋯.some i * (fun i =>0) i =0
∑' (i : ℕ), ↑v i *⋯.some i *0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) summand_eq_zero: ∀ (i : ℕ), ↑v i *⋯.some i * (fun i =>0) i =0
∑' (i : ℕ), 0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) summand_eq_zero: ∀ (i : ℕ), ↑v i *⋯.some i * (fun i =>0) i =0
∑' (i : ℕ), 0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f 0=0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) inner_eq_0: inner f f =0
f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) inner_eq_0: inner f f =0
f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) inner_eq_0: inner f f =0
f =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) inner_eq_0: H_inner f f =0
f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) inner_eq_0: H_inner f f =0
f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) inner_eq_0: ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =0
f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ inner_eq_0: ∑' (i : ℕ), ↑v i * a i * a i =0
f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ inner_eq_0: ∑' (i : ℕ), ↑v i * a i * a i =0
f =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ inner_eq_0: ∑' (i : ℕ), ↑v i * a i * a i =0 i: ℕ
↑v i * a i * a i =↑v i * a i ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ inner_eq_0: ∑' (i : ℕ), ↑v i * a i * a i =0 sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2
f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0
f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0
f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0
f =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0
∀ (i : ℕ), 0≤↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0
∀ (i : ℕ), 0≤↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0
∀ (i : ℕ), 0≤↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 i: ℕ
0≤↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0
∀ (i : ℕ), 0≤↑v i * a i ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2
f =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2
Summable fun i =>↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2
Summable fun i =>↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2
Summable fun i =>↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2
Summable fun i =>↑v i * a i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2
Summable fun i =>↑v i * a i * a i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2
Summable fun i =>↑v i * a i * a i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2
Summable fun i =>↑v i * a i ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0
f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0
f =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0
∀ (i : ℕ), ↑v i * a i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0
∀ (i : ℕ), ↑v i * a i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0
∀ (i : ℕ), ↑v i * a i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 i: ℕ
↑v i * a i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0
∀ (i : ℕ), ↑v i * a i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 i: ℕ x✝: ↑v i =0∨ a i ^2=0
↑v i * a i =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 i: ℕ x✝: ↑v i =0∨ a i ^2=0
↑v i * a i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 i: ℕ hv: ↑v i =0
inl
↑v i * a i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 i: ℕ hv: ↑v i =0
inl
0* a i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 i: ℕ hv: ↑v i =0
inl
0* a i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 i: ℕ hv: ↑v i =0
inl
↑v i * a i =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 i: ℕ x✝: ↑v i =0∨ a i ^2=0
↑v i * a i =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 i: ℕ x✝: ↑v i =0∨ a i ^2=0
↑v i * a i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 i: ℕ ha: a i ^2=0
inr
↑v i * a i =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 i: ℕ ha: a i ^2=0
inr
↑v i *0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 i: ℕ ha: a i ^2=0
inr
↑v i *0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 i: ℕ ha: a i ^2=0
inr
↑v i * a i =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω
a.h
↑f x =↑0 x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω
a.h
↑f x =↑0 x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω
a.h
↑f x =↑0 x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω
a.h
↑f x = zero x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω
a.h
↑f x = zero x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω
a.h
↑f x = zero x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω
a.h
↑f x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x
a.h.intro.intro
↑f x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x
a.h.intro.intro
↑f x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x
a.h.intro.intro
(fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x) x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x
a.h.intro.intro
↑f x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x
a.h.intro.intro
(fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x) x =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x
a.h.intro.intro
(fun x =>∑' (i : ℕ), ↑v i * a i * e i x) x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x
a.h.intro.intro
(fun x =>∑' (i : ℕ), ↑v i * a i * e i x) x =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x
∀ (i : ℕ), ↑v i * a i * e i x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x
∀ (i : ℕ), ↑v i * a i * e i x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x
∀ (i : ℕ), ↑v i * a i * e i x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x i: ℕ
↑v i * a i * e i x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x
∀ (i : ℕ), ↑v i * a i * e i x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x i: ℕ
↑v i * a i * e i x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x i: ℕ
0* e i x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x i: ℕ
0* e i x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x
∀ (i : ℕ), ↑v i * a i * e i x =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x summand_eq_0: ∀ (i : ℕ), ↑v i * a i * e i x =0
a.h.intro.intro
∑' (i : ℕ), ↑v i * a i * e i x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x summand_eq_0: ∀ (i : ℕ), ↑v i * a i * e i x =0
a.h.intro.intro
∑' (i : ℕ), 0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) a:= ⋯.some: ℕ → ℝ sq_summand: ∀ (i : ℕ), ↑v i * a i * a i =↑v i * a i ^2 inner_eq_0: ∑' (i : ℕ), ↑v i * a i ^2=0 summand_nonneg: ∀ (i : ℕ), 0≤↑v i * a i ^2 summand_summable: Summable fun i =>↑v i * a i ^2 summand_eq_zero: ∀ (i : ℕ), ↑v i * a i ^2=0 mul_v_a_eq_0: ∀ (i : ℕ), ↑v i * a i =0 x: ↑Ω right✝¹: Summable fun i =>↑v i *⋯.some i ^2 ha_r: ↑f =fun x =>∑' (i : ℕ), ↑v i *⋯.some i * e i x right✝: ∀ (x : ↑Ω), Summable fun i =>↑v i *⋯.some i * e i x summand_eq_0: ∀ (i : ℕ), ↑v i * a i * e i x =0
a.h.intro.intro
∑' (i : ℕ), 0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =0→ f =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =‖f‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =‖f‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =‖f‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =√(inner f f) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =‖f‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f =√(inner f f) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ)
inner f f = inner f f
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
√(inner (f + t * g) (f + t * g)) ^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g)
√(inner (f + t * g) (f + t * g)) ^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g)
√(inner (f + t * g) (f + t * g)) ^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g)
inner (f + t * g) (f + t * g) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g)
inner (f + t * g) (f + t * g) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ
inner (f + t * g) (f + t * g) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ
inner (f + t * g) (f + t * g) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ
inner (f + t * g) (f + t * g) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ
inner (f + t * g) (f + t * g) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ
a_f_tg ∈ set_repr (f + t * g)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ
a_f_tg ∈ set_repr (f + t * g)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ
a_f_tg ∈ set_repr (f + t * g)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ repr_add: (fun i => a_f i +⋯.some i) ∈ set_repr (f + t * g)
a_f_tg ∈ set_repr (f + t * g)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ
a_f_tg ∈ set_repr (f + t * g)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ repr_add: (fun i => a_f i +⋯.some i) ∈ set_repr (f + t * g) repr_mul: (fun i => t * a_g i) ∈ set_repr (t * g)
a_f_tg ∈ set_repr (f + t * g)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ
a_f_tg ∈ set_repr (f + t * g)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ repr_add: (fun i => a_f i +⋯.some i) ∈ set_repr (f + t * g) repr_mul: (fun i => t * a_g i) ∈ set_repr (t * g)
a_f_tg ∈ set_repr (f + t * g)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ repr_add: (fun i => a_f i + (fun i => t * a_g i) i) ∈ set_repr (f + t * g) repr_mul: (fun i => t * a_g i) ∈ set_repr (t * g)
a_f_tg ∈ set_repr (f + t * g)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ repr_add: (fun i => a_f i + (fun i => t * a_g i) i) ∈ set_repr (f + t * g) repr_mul: (fun i => t * a_g i) ∈ set_repr (t * g)
a_f_tg ∈ set_repr (f + t * g)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g)
inner (f + t * g) (f + t * g) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g)
inner (f + t * g) (f + t * g) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g)
H_inner (f + t * g) (f + t * g) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g)
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g)
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g)
∑' (i : ℕ), ↑v i * a_f_tg i * a_f_tg i =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g)
∑' (i : ℕ), ↑v i * a_f_tg i * a_f_tg i =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g)
∑' (i : ℕ), ↑v i * a_f_tg i * a_f_tg i =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g)
∑' (i : ℕ), ↑v i * a_f_tg i * a_f_tg i =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) i: ℕ
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) i: ℕ
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g)
∑' (i : ℕ), ↑v i * a_f_tg i * a_f_tg i =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i)
∑' (i : ℕ), ↑v i * a_f_tg i * a_f_tg i =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i)
∑' (i : ℕ), (↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i)) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i)
∑' (i : ℕ), (↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i)) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i)
∑' (i : ℕ), (↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i)) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i)
∑' (i : ℕ), (↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i)) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i)
∑' (b : ℕ), (↑v b * a_f b * a_f b +2* t * (↑v b * a_f b * a_g b)) +∑' (b : ℕ), t ^2* (↑v b *⋯.some b *⋯.some b) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i)
∑' (b : ℕ), (↑v b * a_f b * a_f b +2* t * (↑v b * a_f b * a_g b)) +∑' (b : ℕ), t ^2* (↑v b *⋯.some b *⋯.some b) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i)
∑' (b : ℕ), (↑v b * a_f b * a_f b +2* t * (↑v b * a_f b * a_g b)) +∑' (b : ℕ), t ^2* (↑v b *⋯.some b *⋯.some b) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) h: ↑(H v e μ)
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) h: ↑(H v e μ)
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) h: ↑(H v e μ)
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) h: ↑(H v e μ)
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) h: ↑(H v e μ)
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) h: ↑(H v e μ)
H_inner h h =‖h‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) h: ↑(H v e μ)
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) h: ↑(H v e μ)
H_inner h h =‖h‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) h: ↑(H v e μ)
H_inner h h =‖h‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) h: ↑(H v e μ)
inner h h =‖h‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) h: ↑(H v e μ)
∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) h: ↑(H v e μ)
inner h h =‖h‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) h: ↑(H v e μ)
‖h‖^2=‖h‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2
∑' (b : ℕ), (↑v b * a_f b * a_f b +2* t * (↑v b * a_f b * a_g b)) +∑' (b : ℕ), t ^2* (↑v b *⋯.some b *⋯.some b) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2
∑' (b : ℕ), ↑v b *⋯.some b *⋯.some b +∑' (b : ℕ), 2* t * (↑v b *⋯.some b *⋯.some b) +∑' (b : ℕ), t ^2* (↑v b *⋯.some b *⋯.some b) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2
∑' (b : ℕ), ↑v b *⋯.some b *⋯.some b +∑' (b : ℕ), 2* t * (↑v b *⋯.some b *⋯.some b) +∑' (b : ℕ), t ^2* (↑v b *⋯.some b *⋯.some b) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2 const_out: ∑' (i : ℕ), t ^2* (↑v i * a_g i * a_g i) = t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i
∑' (b : ℕ), ↑v b *⋯.some b *⋯.some b +∑' (b : ℕ), 2* t * (↑v b *⋯.some b *⋯.some b) +∑' (b : ℕ), t ^2* (↑v b *⋯.some b *⋯.some b) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2 const_out: ∑' (i : ℕ), t ^2* (↑v i * a_g i * a_g i) = t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i
∑' (b : ℕ), ↑v b *⋯.some b *⋯.some b +∑' (b : ℕ), 2* t * (↑v b *⋯.some b *⋯.some b) +∑' (b : ℕ), t ^2* (↑v b *⋯.some b *⋯.some b) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2 const_out: ∑' (i : ℕ), t ^2* (↑v i * a_g i * a_g i) = t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i
∑' (b : ℕ), ↑v b *⋯.some b *⋯.some b +∑' (b : ℕ), 2* t * (↑v b *⋯.some b *⋯.some b) +
t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2 const_out: ∑' (i : ℕ), t ^2* (↑v i * a_g i * a_g i) = t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i
∑' (b : ℕ), ↑v b *⋯.some b *⋯.some b +∑' (b : ℕ), 2* t * (↑v b *⋯.some b *⋯.some b) +∑' (b : ℕ), t ^2* (↑v b *⋯.some b *⋯.some b) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2 const_out: ∑' (i : ℕ), t ^2* (↑v i * a_g i * a_g i) = t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i
‖f‖^2+∑' (b : ℕ), 2* t * (↑v b *⋯.some b *⋯.some b) + t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2 const_out: ∑' (i : ℕ), t ^2* (↑v i * a_g i * a_g i) = t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i
∑' (b : ℕ), ↑v b *⋯.some b *⋯.some b +∑' (b : ℕ), 2* t * (↑v b *⋯.some b *⋯.some b) +∑' (b : ℕ), t ^2* (↑v b *⋯.some b *⋯.some b) =‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2 const_out: ∑' (i : ℕ), t ^2* (↑v i * a_g i * a_g i) = t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i
‖f‖^2+∑' (b : ℕ), 2* t * (↑v b *⋯.some b *⋯.some b) + t ^2*‖g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2 const_out: ∑' (i : ℕ), t ^2* (↑v i * a_g i * a_g i) = t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i
‖f‖^2+∑' (b : ℕ), 2* t * (↑v b *⋯.some b *⋯.some b) + t ^2*‖g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2 const_out✝: ∑' (i : ℕ), t ^2* (↑v i * a_g i * a_g i) = t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i const_out: ∑' (i : ℕ), 2* t * (↑v i * a_f i * a_g i) =2* t *∑' (i : ℕ), ↑v i * a_f i * a_g i
‖f‖^2+∑' (b : ℕ), 2* t * (↑v b *⋯.some b *⋯.some b) + t ^2*‖g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2 const_out✝: ∑' (i : ℕ), t ^2* (↑v i * a_g i * a_g i) = t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i const_out: ∑' (i : ℕ), 2* t * (↑v i * a_f i * a_g i) =2* t *∑' (i : ℕ), ↑v i * a_f i * a_g i
‖f‖^2+∑' (b : ℕ), 2* t * (↑v b *⋯.some b *⋯.some b) + t ^2*‖g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2 const_out✝: ∑' (i : ℕ), t ^2* (↑v i * a_g i * a_g i) = t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i const_out: ∑' (i : ℕ), 2* t * (↑v i * a_f i * a_g i) =2* t *∑' (i : ℕ), ↑v i * a_f i * a_g i
‖f‖^2+2* t *∑' (i : ℕ), ↑v i * a_f i * a_g i + t ^2*‖g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2 const_out✝: ∑' (i : ℕ), t ^2* (↑v i * a_g i * a_g i) = t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i const_out: ∑' (i : ℕ), 2* t * (↑v i * a_f i * a_g i) =2* t *∑' (i : ℕ), ↑v i * a_f i * a_g i
‖f‖^2+2* t *∑' (i : ℕ), ↑v i * a_f i * a_g i + t ^2*‖g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2 const_out✝: ∑' (i : ℕ), t ^2* (↑v i * a_g i * a_g i) = t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i const_out: ∑' (i : ℕ), 2* t * (↑v i * a_f i * a_g i) =2* t *∑' (i : ℕ), ↑v i * a_f i * a_g i
‖f‖^2+2* t *∑' (i : ℕ), ↑v i * a_f i * a_g i + t ^2*‖g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2 const_out✝: ∑' (i : ℕ), t ^2* (↑v i * a_g i * a_g i) = t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i const_out: ∑' (i : ℕ), 2* t * (↑v i * a_f i * a_g i) =2* t *∑' (i : ℕ), ↑v i * a_f i * a_g i
‖f‖^2+2* t *∑' (i : ℕ), ↑v i * a_f i * a_g i + t ^2*‖g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ
‖f + t * g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2 const_out✝: ∑' (i : ℕ), t ^2* (↑v i * a_g i * a_g i) = t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i const_out: ∑' (i : ℕ), 2* t * (↑v i * a_f i * a_g i) =2* t *∑' (i : ℕ), ↑v i * a_f i * a_g i tsum_to_inner: ∑' (i : ℕ), ↑v i * a_f i * a_g i = inner f g
‖f‖^2+2* t *∑' (i : ℕ), ↑v i * a_f i * a_g i + t ^2*‖g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) t: ℝ inner_nn: 0≤ inner (f + t * g) (f + t * g) a_f:= ⋯.some: ℕ → ℝ a_g:= ⋯.some: ℕ → ℝ a_f_tg:= fun i => a_f i + t * a_g i: ℕ → ℝ a_f_tg_repr: a_f_tg ∈ set_repr (f + t * g) distribute: ∀ (i : ℕ),
↑v i * a_f_tg i * a_f_tg i =↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) + t ^2* (↑v i * a_g i * a_g i) add_summable: Summable fun i =>↑v i * a_f i * a_f i +2* t * (↑v i * a_f i * a_g i) tsum_to_norm: ∀ (h : ↑(H v e μ)), ∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i =‖h‖^2 const_out✝: ∑' (i : ℕ), t ^2* (↑v i * a_g i * a_g i) = t ^2*∑' (i : ℕ), ↑v i * a_g i * a_g i const_out: ∑' (i : ℕ), 2* t * (↑v i * a_f i * a_g i) =2* t *∑' (i : ℕ), ↑v i * a_f i * a_g i tsum_to_inner: ∑' (i : ℕ), ↑v i * a_f i * a_g i = inner f g
‖f‖^2+2* t * inner f g + t ^2*‖g‖^2=‖f‖^2+2* t * inner f g + t ^2*‖g‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0
pos
inner f g ≤‖f‖*‖g‖
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ¬‖g‖≠0
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0
pos
inner f g ≤‖f‖*‖g‖
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ¬‖g‖≠0
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀
P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀
P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀
P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀
P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀
P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + inner f g ^2/ (‖g‖^2*‖g‖^2) *‖g‖^2=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀
P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + inner f g ^2/ (‖g‖^2*‖g‖^2) *‖g‖^2=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + inner f g ^2/ (‖g‖^2*‖g‖^2) *‖g‖^2=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + inner f g ^2/‖g‖^2*1/‖g‖^2*‖g‖^2=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀
P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + inner f g ^2/‖g‖^2*1/‖g‖^2*‖g‖^2=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + inner f g ^2/‖g‖^2*1/‖g‖^2*‖g‖^2=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + inner f g ^2/‖g‖^2* (1/‖g‖^2*‖g‖^2) =‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀
P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + inner f g ^2/‖g‖^2* (1/‖g‖^2*‖g‖^2) =‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + inner f g ^2/‖g‖^2*1=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + inner f g ^2/‖g‖^2*1=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀
P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + inner f g ^2/‖g‖^2*1=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + inner f g ^2/‖g‖^2*1=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + inner f g ^2/‖g‖^2=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀
P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + inner f g ^2/‖g‖^2=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+2* t₀ * inner f g + inner f g ^2/‖g‖^2=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+-2* inner f g ^2/‖g‖^2+ inner f g ^2/‖g‖^2=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀
P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+-2* inner f g ^2/‖g‖^2+ inner f g ^2/‖g‖^2=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0: P t₀ =‖f‖^2+2* t₀ * inner f g + t₀ ^2*‖g‖^2
‖f‖^2+-2* inner f g ^2/‖g‖^2+ inner f g ^2/‖g‖^2=‖f‖^2- inner f g ^2/‖g‖^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤ P t₀ P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
inner f g ^2≤ (‖f‖*‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
inner f g ^2≤ (‖f‖*‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
inner f g ^2≤ (‖f‖*‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
inner f g ^2≤ (‖f‖*‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
inner f g ^2≤ (‖f‖*‖g‖) ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
inner f g ^2≤‖f‖^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
inner f g ^2≤ (‖f‖*‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
inner f g ^2≤‖f‖^2*‖g‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
inner f g ^2* (‖g‖^2)⁻¹≤‖f‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
inner f g ^2* (‖g‖^2)⁻¹≤‖f‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
inner f g ^2≤ (‖f‖*‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
inner f g ^2* (‖g‖^2)⁻¹≤‖f‖^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
0≤‖f‖^2- inner f g ^2* (‖g‖^2)⁻¹
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2
0≤‖f‖^2- inner f g ^2* (‖g‖^2)⁻¹
Goals accomplished!
Goals accomplished!🐙
--rw [←sq_abs (inner f g)] at sq_ineq
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2 sq_ineq: inner f g ^2≤ (‖f‖*‖g‖) ^2
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2 sq_ineq: inner f g ^2≤ (‖f‖*‖g‖) ^2
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2 sq_ineq: inner f g * inner f g ≤ (‖f‖*‖g‖) ^2
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2 sq_ineq: inner f g * inner f g ≤ (‖f‖*‖g‖) ^2
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2 sq_ineq: inner f g * inner f g ≤ (‖f‖*‖g‖) ^2
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2 sq_ineq: inner f g * inner f g ≤ (‖f‖*‖g‖) ^2
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2 sq_ineq: inner f g * inner f g ≤‖f‖*‖g‖* (‖f‖*‖g‖)
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2 sq_ineq: inner f g * inner f g ≤‖f‖*‖g‖* (‖f‖*‖g‖)
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0 hg_sq: ‖g‖^2≠0 P:= fun t =>‖f + t * g‖^2: ℝ → ℝ t₀:= -inner f g /‖g‖^2: ℝ P_nonneg: 0≤‖f‖^2- inner f g ^2/‖g‖^2 P_t0_val: P t₀ =‖f‖^2- inner f g ^2/‖g‖^2 sq_ineq: inner f g * inner f g ≤‖f‖*‖g‖* (‖f‖*‖g‖) norm_mul_nonneg: 0≤‖f‖*‖g‖
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖≠0
pos
inner f g ≤‖f‖*‖g‖
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖=0
neg
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖=0
neg
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: ‖g‖=0
neg
inner f g ≤‖f‖*‖g‖
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: √(inner g g) =0
neg
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: √(inner g g) =0
neg
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: √(inner g g) =0
neg
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0
neg
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0
neg
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0
neg
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0 g_eq_0: g =0
neg
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0 g_eq_0: g =0
neg
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0 g_eq_0: g =0
neg
inner f 0≤‖f‖*‖0‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0 g_eq_0: g =0
neg
inner f 0≤‖f‖*‖0‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0 g_eq_0: g =0
neg
inner f 0≤‖f‖*‖0‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0 g_eq_0: g =0
neg
inner f 0≤‖f‖*‖0‖
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0 g_eq_0: g =0
neg
inner f 0≤‖f‖*‖0‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0 g_eq_0: g =0
neg
inner f 0≤‖f‖*‖0‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0 g_eq_0: g =0
neg
0≤‖f‖*‖0‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0 g_eq_0: g =0
neg
0≤‖f‖*‖0‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0 g_eq_0: g =0
neg
0≤‖f‖*‖0‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0 g_eq_0: g =0
neg
0≤‖f‖*‖0‖
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0 g_eq_0: g =0
neg
0≤‖f‖*√(inner 00)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g ≤‖f‖*‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0 g_eq_0: g =0
neg
0≤‖f‖*√(inner 00)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0 g_eq_0: g =0
neg
0≤‖f‖*√0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) hg: inner g g =0 g_eq_0: g =0
neg
0≤‖f‖*√0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
inner f g ≤‖f‖*‖g‖
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f + g‖≤‖f‖+‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
hb
0≤‖f‖+‖g‖
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f + g‖*‖f + g‖≤ (‖f‖+‖g‖) * (‖f‖+‖g‖)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f + g‖≤‖f‖+‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
hb
0≤‖f‖+‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
hb
0≤‖f‖+‖g‖
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f + g‖*‖f + g‖≤ (‖f‖+‖g‖) * (‖f‖+‖g‖)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f + g‖≤‖f‖+‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
h
‖f + g‖*‖f + g‖≤ (‖f‖+‖g‖) * (‖f‖+‖g‖)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
h
‖f + g‖*‖f + g‖≤ (‖f‖+‖g‖) * (‖f‖+‖g‖)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
h
‖f + g‖^2≤ (‖f‖+‖g‖) * (‖f‖+‖g‖)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f + g‖≤‖f‖+‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
h
‖f + g‖^2≤ (‖f‖+‖g‖) * (‖f‖+‖g‖)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
h
‖f + g‖^2≤ (‖f‖+‖g‖) * (‖f‖+‖g‖)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f + g‖≤‖f‖+‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
2* inner f g ≤2* (‖f‖*‖g‖)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
2* inner f g ≤2* (‖f‖*‖g‖)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
2* inner f g ≤2* (‖f‖*‖g‖)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) this: inner f g ≤‖f‖*‖g‖
2* inner f g ≤2* (‖f‖*‖g‖)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
2* inner f g ≤2* (‖f‖*‖g‖)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) cauchy_schwarz: 2* inner f g ≤2* (‖f‖*‖g‖) ineq: ‖f‖^2+2* inner f g +‖g‖^2≤‖f‖^2+2* (‖f‖*‖g‖) +‖g‖^2
‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) cauchy_schwarz: 2* inner f g ≤2* (‖f‖*‖g‖) ineq: ‖f‖^2+2* inner f g +‖g‖^2≤‖f‖^2+2* (‖f‖*‖g‖) +‖g‖^2
‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) cauchy_schwarz: 2* inner f g ≤2* (‖f‖*‖g‖) ineq: ‖f‖^2+2* inner f g +‖g‖^2≤‖f‖^2+2* (‖f‖*‖g‖) +‖g‖^2
‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) cauchy_schwarz: 2* inner f g ≤2* (‖f‖*‖g‖) ineq: ‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2
‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f + g‖≤‖f‖+‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2*1* inner f g +1^2*‖g‖^2
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f + g‖≤‖f‖+‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2*1* inner f g +1^2*‖g‖^2
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2*1* inner f g +1^2*‖g‖^2
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +1^2*‖g‖^2
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +1^2*‖g‖^2
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f + g‖≤‖f‖+‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +1^2*‖g‖^2
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +1^2*‖g‖^2
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f + g‖≤‖f‖+‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f‖^2+2* inner f g +‖g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f +1* g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f +1* g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f +1* g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f + g‖≤‖f‖+‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f +1* g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f +1* g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2
1* g = g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f +1* g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2
1* g = g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f +1* g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2
1* g = g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f +1* g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2 x: ↑Ω
a.h
↑(1* g) x =↑g x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f +1* g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2
1* g = g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f +1* g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2 x: ↑Ω
a.h
↑(1* g) x =↑g x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f +1* g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2 x: ↑Ω
a.h
↑(1* g) x =↑g x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f +1* g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2 x: ↑Ω
a.h
1*↑g x =↑g x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f +1* g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2
1* g = g
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f +1* g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2 x: ↑Ω
a.h
1*↑g x =↑g x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f +1* g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2 x: ↑Ω
a.h
1*↑g x =↑g x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ)
‖f + g‖≤‖f‖+‖g‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f +1* g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2 one_mul_g_eq_g: 1* g = g
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f + g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2 one_mul_g_eq_g: 1* g = g
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f, g: ↑(H v e μ) sq_ineq: ‖f + g‖^2≤ (‖f‖+‖g‖) ^2 distrib_norm: ‖f +1* g‖^2=‖f‖^2+2* inner f g +‖g‖^2 one_mul_g_eq_g: 1* g = g
h
‖f + g‖^2≤ (‖f‖+‖g‖) ^2
Goals accomplished!
Goals accomplished!🐙
end Inner
/- We show properties on the distance induced by the inner product of H.-/namespace Dist
open Inner Ring Group
variable {v : eigen} {e : ℕ →Ω→ ℝ} {μ : Measure Ω} [IsFiniteMeasure μ] (f g : H v e μ)
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
dist a a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
dist a a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
dist a a =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
‖a - a‖=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
dist a a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
‖a - a‖=0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a - a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a - a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a - a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a - a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a - a =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a +-1* a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a - a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑(a +-1* a) x =↑0 x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a - a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑(a +-1* a) x =↑0 x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑(a +-1* a) x =↑0 x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑a x +↑(-1* a) x =↑0 x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a - a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑a x +↑(-1* a) x =↑0 x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑a x +↑(-1* a) x =↑0 x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑a x +-1*↑a x =↑0 x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a - a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑a x +-1*↑a x =↑0 x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑a x +-1*↑a x =↑0 x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) x: ↑Ω
a.h
↑a x +-1*↑a x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
a - a =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
dist a a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) a_sub_a_eq_0: a - a =0
‖a - a‖=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) a_sub_a_eq_0: a - a =0
‖0‖=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) a_sub_a_eq_0: a - a =0
‖0‖=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
dist a a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) a_sub_a_eq_0: a - a =0
‖0‖=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) a_sub_a_eq_0: a - a =0
‖0‖=0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) a_sub_a_eq_0: a - a =0
√(inner 00) =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
dist a a =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) a_sub_a_eq_0: a - a =0
√(inner 00) =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) a_sub_a_eq_0: a - a =0
√0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ) a_sub_a_eq_0: a - a =0
√0=0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a: ↑(H v e μ)
dist a a =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
‖a - b‖=√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
‖a - b‖=√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
‖a - b‖=√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
√(H_inner (a - b) (a - b)) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
√(∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ
√(∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ
√(∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ
repr ∈ set_repr (a - b)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ
repr ∈ set_repr (a - b)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ
repr ∈ set_repr (a - b)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_minus_b: (fun i =>-1*⋯.some i) ∈ set_repr (-1* b)
repr ∈ set_repr (a - b)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ
repr ∈ set_repr (a - b)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_minus_b: (fun i =>-1*⋯.some i) ∈ set_repr (-1* b) repr_a_sub_b: (fun i =>⋯.some i +⋯.some i) ∈ set_repr (a +-1* b)
repr ∈ set_repr (a - b)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ
repr ∈ set_repr (a - b)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_minus_b: (fun i =>-1*⋯.some i) ∈ set_repr (-1* b) repr_a_sub_b: (fun i =>⋯.some i +⋯.some i) ∈ set_repr (a +-1* b)
repr ∈ set_repr (a - b)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_minus_b: (fun i =>-1*⋯.some i) ∈ set_repr (-1* b) repr_a_sub_b: (fun i =>⋯.some i + (fun i =>-1*⋯.some i) i) ∈ set_repr (a +-1* b)
repr ∈ set_repr (a - b)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_minus_b: (fun i =>-1*⋯.some i) ∈ set_repr (-1* b) repr_a_sub_b: (fun i =>⋯.some i + (fun i =>-1*⋯.some i) i) ∈ set_repr (a +-1* b)
repr ∈ set_repr (a - b)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b)
√(∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b)
√(∑' (i : ℕ), ↑v i * repr i * repr i) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b)
√(∑' (i : ℕ), ↑v i * repr i * repr i) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b) a_r:= ⋯.some: ℕ → ℝ
√(∑' (i : ℕ), ↑v i * repr i * repr i) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ
√(∑' (i : ℕ), ↑v i * repr i * repr i) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ
√(∑' (i : ℕ), ↑v i * repr i * repr i) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ
√(∑' (i : ℕ), ↑v i * repr i * repr i) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ i: ℕ
↑v i * repr i * repr i =↑v i * repr i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ i: ℕ
↑v i * repr i * repr i =↑v i * repr i ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ
∀ (i : ℕ), ↑v i * repr i * repr i =↑v i * repr i ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ
√(∑' (i : ℕ), ↑v i * repr i ^2) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ
√(∑' (i : ℕ), ↑v i * repr i ^2) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ
√(∑' (i : ℕ), ↑v i * repr i ^2) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ i: ℕ
↑v i * repr i ^2=↑v i * (a_r i - b_r i) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ i: ℕ
↑v i * repr i ^2=↑v i * (a_r i - b_r i) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ
∀ (i : ℕ), ↑v i * repr i ^2=↑v i * (a_r i - b_r i) ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) repr:= fun i =>⋯.some i +-1*⋯.some i: ℕ → ℝ repr_a_minus_b: repr ∈ set_repr (a - b) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ
√(∑' (i : ℕ), ↑v i * (a_r i - b_r i) ^2) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b = dist b a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b = dist b a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2) = dist b a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b = dist b a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2) =√(∑' (i : ℕ), ↑v i * (⋯.some i -⋯.some i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b = dist b a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) a_r:= ⋯.some: ℕ → ℝ
√(∑' (i : ℕ), ↑v i * (a_r i -⋯.some i) ^2) =√(∑' (i : ℕ), ↑v i * (⋯.some i - a_r i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b = dist b a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ
√(∑' (i : ℕ), ↑v i * (a_r i - b_r i) ^2) =√(∑' (i : ℕ), ↑v i * (b_r i - a_r i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b = dist b a
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ
√(∑' (i : ℕ), ↑v i * (a_r i - b_r i) ^2) =√(∑' (i : ℕ), ↑v i * (b_r i - a_r i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ
√(∑' (i : ℕ), ↑v i * (a_r i - b_r i) ^2) =√(∑' (i : ℕ), ↑v i * (b_r i - a_r i) ^2)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ i: ℕ
↑v i * (a_r i - b_r i) ^2=↑v i * (b_r i - a_r i) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ i: ℕ
↑v i * (a_r i - b_r i) ^2=↑v i * (b_r i - a_r i) ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) a_r:= ⋯.some: ℕ → ℝ b_r:= ⋯.some: ℕ → ℝ
∀ (i : ℕ), ↑v i * (a_r i - b_r i) ^2=↑v i * (b_r i - a_r i) ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
0≤ dist a b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
0≤ dist a b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
0≤ dist a b
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
0≤‖a - b‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
0≤ dist a b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
0≤‖a - b‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
0≤‖a - b‖
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
0≤√(H_inner (a - b) (a - b))
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
0≤ dist a b
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =0→ a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: dist a b =0
a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =0→ a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: dist a b =0
a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: dist a b =0
a = b
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: ‖a - b‖=0
a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: ‖a - b‖=0
a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =0→ a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: ‖a - b‖=0
a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: ‖a - b‖=0
a = b
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: √(inner (a - b) (a - b)) =0
a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: √(inner (a - b) (a - b)) =0
a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =0→ a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: √(inner (a - b) (a - b)) =0
a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0
a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0
a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0
a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =0→ a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a - b =0
a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =0→ a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a - b =0 x: ↑Ω
a.h
↑a x =↑b x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =0→ a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a - b =0 x: ↑Ω
a.h
↑a x =↑b x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a - b =0 x: ↑Ω
a.h
↑a x =↑b x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a - b =0 x: ↑Ω h: ↑a x -↑b x =0
↑a x =↑b x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a - b =0 x: ↑Ω h: ↑a x -↑b x =0
↑a x =↑b x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a - b =0 x: ↑Ω
a.h
↑a x =↑b x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =0→ a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a - b =0 x: ↑Ω dif_imp_eq: ↑a x -↑b x =0→↑a x =↑b x
a.h
↑a x -↑b x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =0→ a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a - b =0 x: ↑Ω dif_imp_eq: ↑a x -↑b x =0→↑a x =↑b x
a.h
↑a x -↑b x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a - b =0 x: ↑Ω dif_imp_eq: ↑a x -↑b x =0→↑a x =↑b x
a.h
↑a x -↑b x =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a - b =0 x: ↑Ω dif_imp_eq: ↑a x -↑b x =0→↑a x =↑b x
a.h
↑a x +-1*↑b x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =0→ a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a - b =0 x: ↑Ω dif_imp_eq: ↑a x -↑b x =0→↑a x =↑b x
a.h
↑a x +-1*↑b x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a - b =0 x: ↑Ω dif_imp_eq: ↑a x -↑b x =0→↑a x =↑b x
a.h
↑a x +-1*↑b x =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a +-1* b =0 x: ↑Ω dif_imp_eq: ↑a x -↑b x =0→↑a x =↑b x
a.h
↑a x +-1*↑b x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a +-1* b =0 x: ↑Ω dif_imp_eq: ↑a x -↑b x =0→↑a x =↑b x
a.h
↑a x +-1*↑b x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =0→ a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a +-1* b =0 x: ↑Ω dif_imp_eq: ↑a x -↑b x =0→↑a x =↑b x a_minus_b_eq_zero_val: ↑(a +-1* b) =↑0
a.h
↑a x +-1*↑b x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =0→ a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a +-1* b =0 x: ↑Ω dif_imp_eq: ↑a x -↑b x =0→↑a x =↑b x a_minus_b_eq_zero_val: ↑(a +-1* b) =↑0
a.h
↑a x +-1*↑b x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a +-1* b =0 x: ↑Ω dif_imp_eq: ↑a x -↑b x =0→↑a x =↑b x a_minus_b_eq_zero_val: ↑(a +-1* b) =↑0
a.h
↑a x +-1*↑b x =0
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a +-1* b =0 x: ↑Ω dif_imp_eq: ↑a x -↑b x =0→↑a x =↑b x a_minus_b_eq_zero_val: (fun x =>↑a x +-1*↑b x) =↑0
a.h
↑a x +-1*↑b x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a +-1* b =0 x: ↑Ω dif_imp_eq: ↑a x -↑b x =0→↑a x =↑b x a_minus_b_eq_zero_val: (fun x =>↑a x +-1*↑b x) =↑0
a.h
↑a x +-1*↑b x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =0→ a = b
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a +-1* b =0 x: ↑Ω dif_imp_eq: ↑a x -↑b x =0→↑a x =↑b x a_minus_b_eq_zero_val: (fun x =>↑a x +-1*↑b x) =↑0
a.h
↑a x +-1*↑b x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a +-1* b =0 x: ↑Ω dif_imp_eq: ↑a x -↑b x =0→↑a x =↑b x a_minus_b_eq_zero_val: (fun x =>↑a x +-1*↑b x) =↑0
a.h
↑0 x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ) zero_dist: inner (a - b) (a - b) =0 a_minus_b_eq_zero: a +-1* b =0 x: ↑Ω dif_imp_eq: ↑a x -↑b x =0→↑a x =↑b x a_minus_b_eq_zero_val: (fun x =>↑a x +-1*↑b x) =↑0
a.h
↑0 x =0
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b: ↑(H v e μ)
dist a b =0→ a = b
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
dist a c ≤ dist a b + dist b c
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
dist a c ≤ dist a b + dist b c
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
dist a c ≤ dist a b + dist b c
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
‖a - c‖≤ dist a b + dist b c
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
dist a c ≤ dist a b + dist b c
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
‖a - c‖≤ dist a b + dist b c
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
‖a - c‖≤ dist a b + dist b c
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
‖a - c‖≤‖a - b‖+ dist b c
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
dist a c ≤ dist a b + dist b c
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
‖a - c‖≤‖a - b‖+ dist b c
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
‖a - c‖≤‖a - b‖+ dist b c
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
‖a - c‖≤‖a - b‖+‖b - c‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
dist a c ≤ dist a b + dist b c
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
‖a - c‖≤‖a - b‖+‖b - c‖
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
a - c = a - b + (b - c)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
a - c = a - b + (b - c)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
a - c = a - b + (b - c)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a - c) x =↑(a - b + (b - c)) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
a - c = a - b + (b - c)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a - c) x =↑(a - b + (b - c)) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a - c) x =↑(a - b + (b - c)) x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a - c) x =↑(a - b) x +↑(b - c) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
a - c = a - b + (b - c)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a - c) x =↑(a - b) x +↑(b - c) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a - c) x =↑(a - b) x +↑(b - c) x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a - c) x =↑a x +-1*↑b x +↑(b - c) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
a - c = a - b + (b - c)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a - c) x =↑a x +-1*↑b x +↑(b - c) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a - c) x =↑a x +-1*↑b x +↑(b - c) x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a - c) x =↑a x +-1*↑b x + (↑b x +-1*↑c x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
a - c = a - b + (b - c)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a - c) x =↑a x +-1*↑b x + (↑b x +-1*↑c x)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a - c) x =↑a x +-1*↑b x + (↑b x +-1*↑c x)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a - c) x =↑a x +-1*↑c x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
a - c = a - b + (b - c)
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a - c) x =↑a x +-1*↑c x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) x: ↑Ω
a.h
↑(a - c) x =↑a x +-1*↑c x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
dist a c ≤ dist a b + dist b c
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) split_a_sub_c: a - c = a - b + (b - c)
‖a - c‖≤‖a - b‖+‖b - c‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) split_a_sub_c: a - c = a - b + (b - c)
‖a - b + (b - c)‖≤‖a - b‖+‖b - c‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ) split_a_sub_c: a - c = a - b + (b - c)
‖a - b + (b - c)‖≤‖a - b‖+‖b - c‖
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ a, b, c: ↑(H v e μ)
dist a c ≤ dist a b + dist b c
Goals accomplished!
Goals accomplished!🐙
end Dist
/- - We instanciate the `NormedAddCommGroup` and `InnerProductSpace ℝ` typeclasses for H.-/variable {v : eigen} {e : ℕ →Ω→ ℝ} {μ : Measure Ω} [IsFiniteMeasure μ]
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ
(fun n f =>↑n * f) n f =↑n * f
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) z: ℤ
(fun z f =>↑z * f) z f =↑z * f
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
n: ℕ
↑(n +1) =↑n +1
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ
(↑n +1) * f =↑n * f + f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ x: ↑Ω
a.h
↑((↑n +1) * f) x =↑(↑n * f + f) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ
(↑n +1) * f =↑n * f + f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ x: ↑Ω n':= ↑n: ℝ
a.h
↑((↑n +1) * f) x =↑(↑n * f + f) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ
(↑n +1) * f =↑n * f + f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ x: ↑Ω n':= ↑n: ℝ
a.h
↑((↑n +1) * f) x =↑(↑n * f + f) x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ x: ↑Ω n':= ↑n: ℝ
a.h
↑((↑n +1) * f) x =↑(↑n * f + f) x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ x: ↑Ω n':= ↑n: ℝ
a.h
↑((↑n +1) * f) x =↑(n' * f) x +↑f x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ
(↑n +1) * f =↑n * f + f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ x: ↑Ω n':= ↑n: ℝ
a.h
↑((↑n +1) * f) x =↑(n' * f) x +↑f x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ x: ↑Ω n':= ↑n: ℝ
a.h
↑((↑n +1) * f) x =↑(n' * f) x +↑f x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ x: ↑Ω n':= ↑n: ℝ
a.h
↑((↑n +1) * f) x = n' *↑f x +↑f x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ
(↑n +1) * f =↑n * f + f
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ x: ↑Ω n':= ↑n: ℝ
a.h
↑((↑n +1) * f) x = n' *↑f x +↑f x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ x: ↑Ω n':= ↑n: ℝ
a.h
↑((↑n +1) * f) x = n' *↑f x +↑f x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ x: ↑Ω n':= ↑n: ℝ
a.h
(n' +1) *↑f x = n' *↑f x +↑f x
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω v: eigen e: ℕ →↑Ω→ ℝ μ: Measure ↑Ω inst✝: IsFiniteMeasure μ f: ↑(H v e μ) n: ℕ
(↑n +1) * f =↑n * f + f
Goals accomplished!
Goals accomplished!🐙
noncomputableinstance : NormedAddCommGroup (H v e μ) where
dist := λ f g ↦ dist f g
edist := λ f g ↦ ENNReal.ofReal (dist f g)
norm := λ f ↦ norm f
add := λ f g ↦ f + g
add_assoc := Group.H_add_assoc
zero_add := Group.H_zero_add
add_zero := Group.H_add_zero
nsmul := λ n f ↦ (n : ℝ) * f
neg := λ f ↦-f
zsmul := λ z f ↦ (z : ℝ) * f
add_comm := Group.H_add_comm
dist_self := Dist.H_dist_self
dist_comm := Dist.H_dist_comm
dist_triangle := Dist.H_dist_triangle
edist_dist := λ f g ↦ rfl
eq_of_dist_eq_zero := Dist.H_eq_of_dist_eq_zero
dist_eq := λ x y ↦ rfl
neg_add_cancel := λ x ↦ Group.H_add_left_neg x
nsmul_zero :=
∀ (x y : ↑(H v e μ)) (r : ℝ), H_inner (r • x) y = (starRingEnd ℝ) r * H_inner x y
Goals accomplished!🐙
Goals accomplished!🐙
/- --- MERCER --- -//- Given the Mercer's theorem, we prove that H, endowed with k is a RKHS.-/def mercer (v : eigen) (e : ℕ →Ω→ ℝ) (k : Ω→Ω→ ℝ) := ∀ s, (k s =λ t ↦∑' i, v.1 i * e i s * e i t) ∧ (∀ t, Summable (fun i ↦ v.1 i * e i s * e i t))
omit [MeasureSpace ↑Ω] in
Goals accomplished!
omit [MeasureSpace ↑Ω] in
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k
∀ (s : ↑Ω), Summable fun i =>↑v i * e i s ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k s: ↑Ω
Summable fun i =>↑v i * e i s ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k
∀ (s : ↑Ω), Summable fun i =>↑v i * e i s ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k s: ↑Ω
Summable fun i =>↑v i * e i s ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k s: ↑Ω
Summable fun i =>↑v i * e i s ^2
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k s: ↑Ω i: ℕ
↑v i * e i s ^2=↑v i * e i s * e i s
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k s: ↑Ω i: ℕ
↑v i * e i s ^2=↑v i * e i s * e i s
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k s: ↑Ω
∀ (i : ℕ), ↑v i * e i s ^2=↑v i * e i s * e i s
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k s: ↑Ω
Summable fun i =>↑v i * e i s * e i s
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k
∀ (s : ↑Ω), Summable fun i =>↑v i * e i s ^2
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ
∀ (f : ↑(H v e μ)) (x : ↑Ω), ↑f x = inner f ⟨k x, ⋯⟩
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ f: ↑(H v e μ) x: ↑Ω
↑f x = inner f ⟨k x, ⋯⟩
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ
∀ (f : ↑(H v e μ)) (x : ↑Ω), ↑f x = inner f ⟨k x, ⋯⟩
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ f: ↑(H v e μ) x: ↑Ω k_H:= ⟨k x, ⋯⟩: ↑(H v e μ)
↑f x = inner f ⟨k x, ⋯⟩
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ
∀ (f : ↑(H v e μ)) (x : ↑Ω), ↑f x = inner f ⟨k x, ⋯⟩
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ f: ↑(H v e μ) x: ↑Ω k_H:= ⟨k x, ⋯⟩: ↑(H v e μ)
↑f x = inner f ⟨k x, ⋯⟩
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ f: ↑(H v e μ) x: ↑Ω k_H:= ⟨k x, ⋯⟩: ↑(H v e μ)
↑f x = inner f ⟨k x, ⋯⟩
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ f: ↑(H v e μ) x: ↑Ω k_H:= ⟨k x, ⋯⟩: ↑(H v e μ)
↑f x = H_inner f k_H
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ
∀ (f : ↑(H v e μ)) (x : ↑Ω), ↑f x = inner f ⟨k x, ⋯⟩
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ f: ↑(H v e μ) x: ↑Ω k_H:= ⟨k x, ⋯⟩: ↑(H v e μ)
↑f x =∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ
∀ (f : ↑(H v e μ)) (x : ↑Ω), ↑f x = inner f ⟨k x, ⋯⟩
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ f: ↑(H v e μ) x: ↑Ω k_H:= ⟨k x, ⋯⟩: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ
↑f x =∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ
∀ (f : ↑(H v e μ)) (x : ↑Ω), ↑f x = inner f ⟨k x, ⋯⟩
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ f: ↑(H v e μ) x: ↑Ω k_H:= ⟨k x, ⋯⟩: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ this: ⋯.some =fun i => e i x
↑f x =∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ
∀ (f : ↑(H v e μ)) (x : ↑Ω), ↑f x = inner f ⟨k x, ⋯⟩
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ f: ↑(H v e μ) x: ↑Ω k_H:= ⟨k x, ⋯⟩: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ this: ⋯.some =fun i => e i x
↑f x =∑' (i : ℕ), ↑v i *⋯.some i *⋯.some i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ f: ↑(H v e μ) x: ↑Ω k_H:= ⟨k x, ⋯⟩: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ this: ⋯.some =fun i => e i x
↑f x =∑' (i : ℕ), ↑v i *⋯.some i * (fun i => e i x) i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ f: ↑(H v e μ) x: ↑Ω k_H:= ⟨k x, ⋯⟩: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ this: ⋯.some =fun i => e i x
↑f x =∑' (i : ℕ), ↑v i *⋯.some i * (fun i => e i x) i
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ
∀ (f : ↑(H v e μ)) (x : ↑Ω), ↑f x = inner f ⟨k x, ⋯⟩
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ f: ↑(H v e μ) x: ↑Ω k_H:= ⟨k x, ⋯⟩: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ this: ⋯.some =fun i => e i x
↑f x =∑' (i : ℕ), ↑v i *⋯.some i * (fun i => e i x) i
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ f: ↑(H v e μ) x: ↑Ω k_H:= ⟨k x, ⋯⟩: ↑(H v e μ) a_f:= ⋯.some: ℕ → ℝ this✝: ⋯.some =fun i => e i x this: ↑f =fun x =>∑' (i : ℕ), ↑v i * a_f i * e i x
↑f x =∑' (i : ℕ), ↑v i *⋯.some i * (fun i => e i x) i
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
d: ℕ Ω: Set (Vector ℝ d) inst✝¹: MeasureSpace ↑Ω μ: Measure ↑Ω inst✝: IsFiniteMeasure μ v: eigen e: ℕ →↑Ω→ ℝ k: ↑Ω→↑Ω→ ℝ h_mercer: mercer v e k hk_l2: ∀ (s : ↑Ω), k s ∈ L2 μ
∀ (f : ↑(H v e μ)) (x : ↑Ω), ↑f x = inner f ⟨k x, ⋯⟩
Goals accomplished!
Goals accomplished!🐙
variable (k : Ω→Ω→ ℝ) (v : eigen) (e : ℕ →Ω→ ℝ) (h_mercer : mercer v e k) (hk_l2 : ∀ s, k s ∈ L2 μ)
instance : RKHS (H v e μ) where
k := k
memb := k_i_H h_mercer hk_l2
repro := k_repro h_mercer hk_l2