Built with Alectryon, running Lean4 v4.19.0. Bubbles () indicate interactive fragments: hover for details, tap to reveal contents. Use Ctrl+↑Ctrl+↓ to navigate, Ctrl+🖱️ to focus. On Mac, use ⌘ instead of Ctrl.
/- - Created in 2024 by Gaëtan Serré-//-- https://github.com/gaetanserre/SBS-Proofs-/import Mathlib.MeasureTheory.Function.AEEqOfIntegral
import SBSProofs.Bijection
open ENNReal MeasureTheory
set_option maxHeartbeats 400000variable {α β : Type*} [MeasureSpace α]
/- Definition of pushforward measure-/def measure_set_of_pushforward_measure [MeasureSpace β]
(μ : Measure α) (p_μ : Measure β) (f : β → α) :=
∀ (B : Set β), p_μ B = μ (f '' B)
def push_forward_integration [MeasureSpace β]
(μ : Measure α) (p_μ : Measure β) (T : α → β) (T_inv : β → α) :=
∀ (φ : β → ℝ), ∀ (B : Set β), ∫ x in B, φ x ∂p_μ =∫ x in T_inv '' B, (φ ∘ T) x ∂μ
structure Pushforward_Measure (α β : Type*) [MeasureSpace α] [MeasureSpace β] where
p_μ : Measure β
μ : Measure α
T : α → β
T_inv : β → α
measure_app : measure_set_of_pushforward_measure μ p_μ T_inv
is_bij : is_bijective T
is_reci : is_reciprocal T T_inv
integration : push_forward_integration μ p_μ T T_inv
/-- Definition of measure with density w.r.t. the Lesbegue measure.-/structure DensityMeasure (α : Type*) [MeasureSpace α] extends Measure α where
d : α → ℝ≥0∞
d_neq_top : ∀ x, d x ≠⊤
d_measurable : Measurable d
d_finite : ∫⁻ x, d x ≠∞
lebesgue_density : toMeasure = volume.withDensity d
variable {μ : Measure α}
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 β: Type u_2 inst✝: MeasureSpace α μ: Measure α f, g: α → β h: f =ᶠ[ae μ] g s: Set α
∀ᵐ (x : α) ∂μ, x ∈ s → f x = g x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 β: Type u_2 inst✝: MeasureSpace α μ: Measure α f, g: α → β h: ∀ (s : Set α), ∀ᵐ (x : α) ∂μ, x ∈ s → f x = g x
f =ᶠ[ae μ] g
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g
(fun x => (f x).toReal) =ᶠ[ae μ] fun x => (g x).toReal
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g
(fun x => (f x).toReal) =ᶠ[ae μ] fun x => (g x).toReal
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g
{x | (f x).toReal = (g x).toReal}ᶜ⊆ {x | f x = g x}ᶜ
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g
{x | (f x).toReal = (g x).toReal}ᶜ⊆ {x | f x = g x}ᶜ
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g
{x | (f x).toReal = (g x).toReal}ᶜ⊆ {x | f x = g x}ᶜ
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g
{x | (f x).toReal = (g x).toReal}ᶜ⊆ {x | f x = g x}ᶜ
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g
{x | f x = g x} ⊆ {x | (f x).toReal = (g x).toReal}
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g
{x | f x = g x} ⊆ {x | (f x).toReal = (g x).toReal}
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g
{x | f x = g x} ⊆ {x | (f x).toReal = (g x).toReal}
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g x: α hx: f x = g x
x ∈ {x | (f x).toReal = (g x).toReal}
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g
{x | f x = g x} ⊆ {x | (f x).toReal = (g x).toReal}
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g
{x | (f x).toReal = (g x).toReal}ᶜ⊆ {x | f x = g x}ᶜ
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g
(fun x => (f x).toReal) =ᶠ[ae μ] fun x => (g x).toReal
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g compl_ss: {x | (f x).toReal = (g x).toReal}ᶜ⊆ {x | f x = g x}ᶜ leq_μ: μ {x | (f x).toReal = (g x).toReal}ᶜ≤ μ {x | f x = g x}ᶜ
(fun x => (f x).toReal) =ᶠ[ae μ] fun x => (g x).toReal
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g
(fun x => (f x).toReal) =ᶠ[ae μ] fun x => (g x).toReal
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g compl_ss: {x | (f x).toReal = (g x).toReal}ᶜ⊆ {x | f x = g x}ᶜ leq_μ: μ {x | (f x).toReal = (g x).toReal}ᶜ≤ μ {x | f x = g x}ᶜ h_ae: μ {x | f x ≠ g x} =0
(fun x => (f x).toReal) =ᶠ[ae μ] fun x => (g x).toReal
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g
(fun x => (f x).toReal) =ᶠ[ae μ] fun x => (g x).toReal
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g compl_ss: {x | (f x).toReal = (g x).toReal}ᶜ⊆ {x | f x = g x}ᶜ leq_μ: μ {x | (f x).toReal = (g x).toReal}ᶜ≤ μ {x | f x = g x}ᶜ h_ae: μ {x | f x ≠ g x} =0
(fun x => (f x).toReal) =ᶠ[ae μ] fun x => (g x).toReal
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g compl_ss: {x | (f x).toReal = (g x).toReal}ᶜ⊆ {x | f x = g x}ᶜ leq_μ: μ {x | (f x).toReal = (g x).toReal}ᶜ≤0 h_ae: μ {x | f x ≠ g x} =0
(fun x => (f x).toReal) =ᶠ[ae μ] fun x => (g x).toReal
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g compl_ss: {x | (f x).toReal = (g x).toReal}ᶜ⊆ {x | f x = g x}ᶜ leq_μ: μ {x | (f x).toReal = (g x).toReal}ᶜ≤0 h_ae: μ {x | f x ≠ g x} =0
(fun x => (f x).toReal) =ᶠ[ae μ] fun x => (g x).toReal
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g compl_ss: {x | (f x).toReal = (g x).toReal}ᶜ⊆ {x | f x = g x}ᶜ leq_μ: μ {x | (f x).toReal = (g x).toReal}ᶜ≤0 h_ae: μ {x | f x ≠ g x} =0
(fun x => (f x).toReal) =ᶠ[ae μ] fun x => (g x).toReal
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: Measure α f, g: α → ℝ≥0∞ h: f =ᶠ[ae μ] g
(fun x => (f x).toReal) =ᶠ[ae μ] fun x => (g x).toReal
Goals accomplished!
Goals accomplished!🐙
namespace DensityMeasure
instance instCoeFun : CoeFun (DensityMeasure α) λ _ => Set α → ℝ≥0∞ := ⟨fun m => m.toMeasure⟩
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α
∀ ⦃s : Set α⦄, MeasurableSet s → μ.toMeasure s =∫⁻ (x : α) in s, μ.d x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α s: Set α hs: MeasurableSet s
μ.toMeasure s =∫⁻ (x : α) in s, μ.d x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α
∀ ⦃s : Set α⦄, MeasurableSet s → μ.toMeasure s =∫⁻ (x : α) in s, μ.d x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α s: Set α hs: MeasurableSet s
μ.toMeasure s =∫⁻ (x : α) in s, μ.d x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α s: Set α hs: MeasurableSet s
μ.toMeasure s = (volume.withDensity μ.d) s
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α s: Set α hs: MeasurableSet s
μ.toMeasure s = (volume.withDensity μ.d) s
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α
∀ ⦃s : Set α⦄, MeasurableSet s → μ.toMeasure s =∫⁻ (x : α) in s, μ.d x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∫ (x : α), f x ∂μ.toMeasure =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∫ (x : α), f x ∂μ.toMeasure =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
(∫⁻ (a : α), ENNReal.ofReal (f a) ∂μ.toMeasure).toReal - (∫⁻ (a : α), ENNReal.ofReal (-f a) ∂μ.toMeasure).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∫ (x : α), f x ∂μ.toMeasure =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
(∫⁻ (a : α), ENNReal.ofReal (f a) ∂volume.withDensity μ.d).toReal -
(∫⁻ (a : α), ENNReal.ofReal (-f a) ∂volume.withDensity μ.d).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
(∫⁻ (a : α), ENNReal.ofReal (f a) ∂volume.withDensity μ.d).toReal -
(∫⁻ (a : α), ENNReal.ofReal (-f a) ∂volume.withDensity μ.d).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∫ (x : α), f x ∂μ.toMeasure =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
(∫⁻ (a : α), ENNReal.ofReal (f a) ∂volume.withDensity μ.d).toReal -
(∫⁻ (a : α), ENNReal.ofReal (-f a) ∂volume.withDensity μ.d).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
(∫⁻ (a : α), (μ.d *fun x => ENNReal.ofReal (f x)) a).toReal -
(∫⁻ (a : α), ENNReal.ofReal (-f a) ∂volume.withDensity μ.d).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
(∫⁻ (a : α), (μ.d *fun x => ENNReal.ofReal (f x)) a).toReal -
(∫⁻ (a : α), ENNReal.ofReal (-f a) ∂volume.withDensity μ.d).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∫ (x : α), f x ∂μ.toMeasure =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
(∫⁻ (a : α), (μ.d *fun x => ENNReal.ofReal (f x)) a).toReal -
(∫⁻ (a : α), ENNReal.ofReal (-f a) ∂volume.withDensity μ.d).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
(∫⁻ (a : α), (μ.d *fun x => ENNReal.ofReal (f x)) a).toReal -
(∫⁻ (a : α), (μ.d *fun x => ENNReal.ofReal (-f x)) a).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
(∫⁻ (a : α), (μ.d *fun x => ENNReal.ofReal (f x)) a).toReal -
(∫⁻ (a : α), (μ.d *fun x => ENNReal.ofReal (-f x)) a).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∫ (x : α), f x ∂μ.toMeasure =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
(∫⁻ (a : α), (μ.d *fun x => ENNReal.ofReal (f x)) a).toReal -
(∫⁻ (a : α), (μ.d *fun x => ENNReal.ofReal (-f x)) a).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f✝: α → ℝ hi: Integrable f✝ μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f✝ x) hm_lo: Measurable fun x => ENNReal.ofReal (-f✝ x) hi_mul: Integrable (fun x => (μ.d x).toReal * f✝ x) volume f: α → ℝ a: α
(μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∫ (x : α), f x ∂μ.toMeasure =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a)
(∫⁻ (a : α), (μ.d *fun x => ENNReal.ofReal (f x)) a).toReal -
(∫⁻ (a : α), (μ.d *fun x => ENNReal.ofReal (-f x)) a).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a)
(∫⁻ (a : α), μ.d a * ENNReal.ofReal (f a)).toReal - (∫⁻ (a : α), (μ.d *fun x => ENNReal.ofReal (-f x)) a).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a)
(∫⁻ (a : α), (μ.d *fun x => ENNReal.ofReal (f x)) a).toReal -
(∫⁻ (a : α), (μ.d *fun x => ENNReal.ofReal (-f x)) a).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a)
(∫⁻ (a : α), μ.d a * ENNReal.ofReal (f a)).toReal - (∫⁻ (a : α), μ.d a * ENNReal.ofReal (-f a)).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a)
(∫⁻ (a : α), μ.d a * ENNReal.ofReal (f a)).toReal - (∫⁻ (a : α), μ.d a * ENNReal.ofReal (-f a)).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∫ (x : α), f x ∂μ.toMeasure =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal
(∫⁻ (a : α), μ.d a * ENNReal.ofReal (f a)).toReal - (∫⁻ (a : α), μ.d a * ENNReal.ofReal (-f a)).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∫ (x : α), f x ∂μ.toMeasure =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal
(∫⁻ (a : α), μ.d a * ENNReal.ofReal (f a)).toReal - (∫⁻ (a : α), μ.d a * ENNReal.ofReal (-f a)).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal
∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal
∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal
∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal a: α
ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal
∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal a: α
ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal a: α
ENNReal.ofReal ((μ.d a).toReal * f a) = ENNReal.ofReal (μ.d a).toReal * ENNReal.ofReal (f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal a: α
ENNReal.ofReal ((μ.d a).toReal * f a) = ENNReal.ofReal (μ.d a).toReal * ENNReal.ofReal (f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal
∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∫ (x : α), f x ∂μ.toMeasure =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
(∫⁻ (a : α), μ.d a * ENNReal.ofReal (f a)).toReal - (∫⁻ (a : α), μ.d a * ENNReal.ofReal (-f a)).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
(∫⁻ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a)).toReal - (∫⁻ (a : α), μ.d a * ENNReal.ofReal (-f a)).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
(∫⁻ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a)).toReal - (∫⁻ (a : α), μ.d a * ENNReal.ofReal (-f a)).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∫ (x : α), f x ∂μ.toMeasure =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
(∫⁻ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a)).toReal - (∫⁻ (a : α), μ.d a * ENNReal.ofReal (-f a)).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
∀ (a : α), ENNReal.ofReal (-((μ.d a).toReal * f a)) = μ.d a * ENNReal.ofReal (-f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
∀ (a : α), ENNReal.ofReal (-((μ.d a).toReal * f a)) = μ.d a * ENNReal.ofReal (-f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
∀ (a : α), ENNReal.ofReal (-((μ.d a).toReal * f a)) = μ.d a * ENNReal.ofReal (-f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a) a: α
ENNReal.ofReal (-((μ.d a).toReal * f a)) = μ.d a * ENNReal.ofReal (-f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
∀ (a : α), ENNReal.ofReal (-((μ.d a).toReal * f a)) = μ.d a * ENNReal.ofReal (-f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a) a: α
ENNReal.ofReal (-((μ.d a).toReal * f a)) = μ.d a * ENNReal.ofReal (-f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a) a: α
ENNReal.ofReal (-((μ.d a).toReal * f a)) = μ.d a * ENNReal.ofReal (-f a)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a) a: α
ENNReal.ofReal ((μ.d a).toReal *-f a) = μ.d a * ENNReal.ofReal (-f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
∀ (a : α), ENNReal.ofReal (-((μ.d a).toReal * f a)) = μ.d a * ENNReal.ofReal (-f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a) a: α
ENNReal.ofReal ((μ.d a).toReal *-f a) = μ.d a * ENNReal.ofReal (-f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a) a: α
ENNReal.ofReal ((μ.d a).toReal *-f a) = ENNReal.ofReal (μ.d a).toReal * ENNReal.ofReal (-f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a) a: α
ENNReal.ofReal ((μ.d a).toReal *-f a) = ENNReal.ofReal (μ.d a).toReal * ENNReal.ofReal (-f a)
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a)
∀ (a : α), ENNReal.ofReal (-((μ.d a).toReal * f a)) = μ.d a * ENNReal.ofReal (-f a)
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∫ (x : α), f x ∂μ.toMeasure =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a) enn_lo_coe: ∀ (a : α), ENNReal.ofReal (-((μ.d a).toReal * f a)) = μ.d a * ENNReal.ofReal (-f a)
(∫⁻ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a)).toReal - (∫⁻ (a : α), μ.d a * ENNReal.ofReal (-f a)).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a) enn_lo_coe: ∀ (a : α), ENNReal.ofReal (-((μ.d a).toReal * f a)) = μ.d a * ENNReal.ofReal (-f a)
(∫⁻ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a)).toReal -
(∫⁻ (a : α), ENNReal.ofReal (-((μ.d a).toReal * f a))).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a) enn_lo_coe: ∀ (a : α), ENNReal.ofReal (-((μ.d a).toReal * f a)) = μ.d a * ENNReal.ofReal (-f a)
(∫⁻ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a)).toReal -
(∫⁻ (a : α), ENNReal.ofReal (-((μ.d a).toReal * f a))).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume
∫ (x : α), f x ∂μ.toMeasure =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a) enn_lo_coe: ∀ (a : α), ENNReal.ofReal (-((μ.d a).toReal * f a)) = μ.d a * ENNReal.ofReal (-f a)
(∫⁻ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a)).toReal -
(∫⁻ (a : α), ENNReal.ofReal (-((μ.d a).toReal * f a))).toReal =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ hi: Integrable f μ.toMeasure hm_up: Measurable fun x => ENNReal.ofReal (f x) hm_lo: Measurable fun x => ENNReal.ofReal (-f x) hi_mul: Integrable (fun x => (μ.d x).toReal * f x) volume rw_fun: ∀ (f : α → ℝ) (a : α), (μ.d *fun a => ENNReal.ofReal (f a)) a = μ.d a * ENNReal.ofReal (f a) coe_density_nonneg: ∀ (a : α), 0≤ (μ.d a).toReal enn_up_coe: ∀ (a : α), ENNReal.ofReal ((μ.d a).toReal * f a) = μ.d a * ENNReal.ofReal (f a) enn_lo_coe: ∀ (a : α), ENNReal.ofReal (-((μ.d a).toReal * f a)) = μ.d a * ENNReal.ofReal (-f a)
∫ (a : α), (μ.d a).toReal * f a =∫ (x : α), (μ.d x).toReal * f x
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ≥0∞ hm: Measurable f
∫⁻ (x : α), f x ∂μ.toMeasure =∫⁻ (x : α), μ.d x * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ≥0∞ hm: Measurable f
∫⁻ (x : α), f x ∂μ.toMeasure =∫⁻ (x : α), μ.d x * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ≥0∞ hm: Measurable f
∫⁻ (x : α), f x ∂volume.withDensity μ.d =∫⁻ (x : α), μ.d x * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ≥0∞ hm: Measurable f
∫⁻ (x : α), f x ∂volume.withDensity μ.d =∫⁻ (x : α), μ.d x * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ≥0∞ hm: Measurable f
∫⁻ (x : α), f x ∂μ.toMeasure =∫⁻ (x : α), μ.d x * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ≥0∞ hm: Measurable f
∫⁻ (x : α), f x ∂volume.withDensity μ.d =∫⁻ (x : α), μ.d x * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ≥0∞ hm: Measurable f
∫⁻ (a : α), (μ.d * f) a =∫⁻ (x : α), μ.d x * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ≥0∞ hm: Measurable f
∫⁻ (a : α), (μ.d * f) a =∫⁻ (x : α), μ.d x * f x
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f: α → ℝ≥0∞ hm: Measurable f
∫⁻ (x : α), f x ∂μ.toMeasure =∫⁻ (x : α), μ.d x * f x
Goals accomplished!
Goals accomplished!🐙
@[ext]
Goals accomplished!
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ₁, μ₂: DensityMeasure α h: ∀ (x : α), μ₁.d x = μ₂.d x
μ₁ = μ₂
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ₁, μ₂: DensityMeasure α h: ∀ (x : α), μ₁.d x = μ₂.d x f_ext: μ₁.d = μ₂.d
μ₁ = μ₂
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ₁, μ₂: DensityMeasure α h: ∀ (x : α), μ₁.d x = μ₂.d x
μ₁ = μ₂
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ₁, μ₂: DensityMeasure α h: ∀ (x : α), μ₁.d x = μ₂.d x f_ext: μ₁.d = μ₂.d
μ₁ = μ₂
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ₁, μ₂: DensityMeasure α h: ∀ (x : α), μ₁.d x = μ₂.d x f_ext: μ₁.d = μ₂.d
μ₁.toMeasure = μ₂.toMeasure
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ₁, μ₂: DensityMeasure α h: ∀ (x : α), μ₁.d x = μ₂.d x f_ext: μ₁.d = μ₂.d
μ₁.toMeasure = μ₂.toMeasure
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ₁, μ₂: DensityMeasure α h: ∀ (x : α), μ₁.d x = μ₂.d x f_ext: μ₁.d = μ₂.d
μ₁.toMeasure = μ₂.toMeasure
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ₁, μ₂: DensityMeasure α h: ∀ (x : α), μ₁.d x = μ₂.d x f_ext: μ₁.d = μ₂.d
μ₁.toMeasure = μ₂.toMeasure
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ₁, μ₂: DensityMeasure α h: ∀ (x : α), μ₁.d x = μ₂.d x f_ext: μ₁.d = μ₂.d
volume.withDensity μ₁.d = μ₂.toMeasure
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ₁, μ₂: DensityMeasure α h: ∀ (x : α), μ₁.d x = μ₂.d x f_ext: μ₁.d = μ₂.d
μ₁.toMeasure = μ₂.toMeasure
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ₁, μ₂: DensityMeasure α h: ∀ (x : α), μ₁.d x = μ₂.d x f_ext: μ₁.d = μ₂.d
volume.withDensity μ₁.d = volume.withDensity μ₂.d
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ₁, μ₂: DensityMeasure α h: ∀ (x : α), μ₁.d x = μ₂.d x f_ext: μ₁.d = μ₂.d
μ₁.toMeasure = μ₂.toMeasure
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ₁, μ₂: DensityMeasure α h: ∀ (x : α), μ₁.d x = μ₂.d x f_ext: μ₁.d = μ₂.d
volume.withDensity μ₂.d = volume.withDensity μ₂.d
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ₁, μ₂: DensityMeasure α h: ∀ (x : α), μ₁.d x = μ₂.d x
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f, g: α → ℝ≥0∞ h_ae_nonneg: ∀ᵐ (x : α), μ.d x ≠0 h: f =ᶠ[ae volume] g
mpr
f =ᶠ[ae (volume.withDensity μ.d)] g
Goals accomplished!
Goals accomplished!🐙
Goals accomplished!
α: Type u_1 inst✝: MeasureSpace α μ: DensityMeasure α f, g: α → ℝ≥0∞ h_ae_nonneg: ∀ᵐ (x : α), μ.d x ≠0 h: f =ᶠ[ae volume] g this: ∀ᵐ (x : α) ∂volume.withDensity μ.d, f x = g x